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Abstract

We study finite-time control of perturbed dynamical systems based on the time

transformation approach. For addressing time-critical applications, where the

execution of a control algorithm over a prescribed time interval [0, τ) is necessary

with τ being a user-defined convergence time, we introduce a new class of scalar,

time-varying gain functions entitled as “generalized finite-time gain functions”

that have the capability to convert an original baseline control algorithm into

a time-varying one. Based on these generalized finite-time gain functions, in

particular, the corresponding “generalized time transformation functions” are

obtained and used to transform a resulting algorithm over the prescribed time

interval [0, τ) to an equivalent algorithm over the stretched infinite-time inter-

val [0,∞) for stability analysis, where the connection between the generalized

finite-time gain functions and their corresponding generalized time transforma-

tion functions are investigated in detail. A procedure for designing finite-time

control algorithms is further proposed and illustrated by numerical examples

showing that the method is applicable to, but not limited to, a class of nonlin-

ear systems as well as multiagent systems. In addition, we show all the condi-

tions on the proposed generalized finite-time gain functions that guarantee the

boundedness and convergence of the state and control signals. An application
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of our theoretical findings to the distributed control of networked multiagent

systems problem over a prescribed time interval is also presented.
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1. Introduction

In many practical applications such as engagement of a guided missile with a

target, landing of an aerial vehicle at a non-stationary carrier, and sequential ex-

ecution of given complex tasks, finite-time control algorithms play an important

role (see, for example, [1, 2, 3, 4] and the references therein). These time-critical5

applications are often performed over a time interval [0, τ), where the utilized

finite-time control algorithms are expected to guarantee a task completion at a

user-defined convergence time τ .

1.1. Literature Review

Lyapunov theory for finite-time stabilization and corresponding non-10

Lipschitzian control methods are introduced in [1, 2, 5]. Since then, such tools

have been utilized for addressing a wide range of problems in various applica-

tions. Specifically, in multiagent systems, non-Lipschitzian finite-time control

algorithms are developed to solve consensus problems [6, 7, 8, 9, 10, 11, 12],

formation tracking problems [13, 14], and containment problems [15, 16], to15

name but a few examples. Since these methods aim to develop time-invariant

controllers, the convergence time depends on initial conditions; hence, τ may

not be assigned by a control designer.

To provide a remedy to this problem, several results (see, for example,

[17, 18, 19, 20, 21, 22, 23] and references therein) focus on developing con-20

trol algorithms with bounded convergence time regardless of initial conditions

(fixed-time convergence). A representative result is presented in [24], where the

authors utilize homogeneous approximation and show that under some condi-

tions, if the degree of the homogeneous approximation in 0-limit is strictly neg-

ative while the degree of the homogeneous approximation in ∞-limit is strictly25
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positive, then the convergence time does not depend on the initial condition.

Yet, the calculated upper bounds for the convergence times do not necessarily

hold globally and they can be conservative. A recent result presented in [25]

also provides the necessary and sufficient conditions for the fixed-time stability.

In addition, there are studies that allow a user-defined convergence time τ to30

be assigned to the finite-time algorithms utilized in time-critical applications.

For example, the authors of [26] propose a class of distributed control protocols

to solve the consensus problem of linear multiagent systems within a prescribed

time by reducing the sampling time as time progresses. As another exam-

ple, the authors of [27] propose a methodology for designing autonomous and35

non-autonomous pre-defined settling time systems. However, their results still

require some knowledge of initial conditions. Furthermore, a group of papers

such as [3, 4, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] shares the same idea of

introducing a time-varying gain into the controller for solving the control prob-

lem in a user-defined convergence time. Yet, different techniques for stability40

analysis are utilized in these papers. For instance, while [31, 32, 33, 34, 35, 36]

focus on showing the stability of the system via the explicit solution, the au-

thors of [37, 38, 39] utilize the comparison principle (see, for example, section

3.4 of [40]) on the Lyapunov function candidate for stability analysis. Taking

another path, the authors of [3, 4] utilize a novel time transformation approach45

to transform the original system into an equivalent system on a stretched time

interval [0,∞) and analyze this transformed system. The results of this paper

are particularly related to and generalize the recent studies in [3, 4].

1.2. Contribution

In this paper, we study finite-time control of perturbed dynamical systems50

based on the time transformation approach. For addressing time-critical ap-

plications, where the execution of a control algorithm over a prescribed time

interval [0, τ) is necessary with τ being a user-defined convergence time, we

introduce a new class of scalar, time-varying gain functions entitled “general-

ized finite-time gain functions” that have the capability to convert an original55
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baseline control algorithm into a time-varying one. Based on these general-

ized finite-time gain functions, in particular, the corresponding “generalized

time transformation functions” are obtained and used to transform the result-

ing closed-loop system over the prescribed time interval [0, τ) into an equivalent

one over the stretched infinite-time interval [0,∞) for stability analysis. The60

contributions of this paper are now stated:

• The time transformation method is introduced for allowing tools and

methods from standard Lyapunov analysis to be used for analyzing the

stability of the transformed system on the stretched time interval and then

drawing a conclusion for the original system.65

• The finite-time gain function and its corresponding time transformation

function are generalized and their relationship is characterized.

• A procedure is further proposed for designing finite-time control algo-

rithms together with illustrative numerical examples showing that the

method is applicable to, but not limited to, a class of nonlinear systems70

as well as multiagent systems.

• System-theoretical conditions for guaranteeing the boundedness of control

signals are also investigated in detail.

1.3. Organization

The paper is organized as follows. In Section 2, we state the necessary75

mathematical preliminaries and a key lemma for our main results. The proposed

generalized time transformation functions-based finite-time control problem over

the prescribed time interval [0, τ) is introduced and analyzed in Section 3. We

also present an application of our theoretical findings to the distributed control

of networked multiagent systems problem over a prescribed time interval in80

Section 4. Finally, our concluding remarks are summarized in Section 5. Note

that a preliminary conference version of this paper is appeared in [41]. The

present paper considerably expands on [41] by providing the detailed proofs of

all the results together with additional remarks and discussions.
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2. Mathematical Preliminaries85

Standard mathematical notations are used in this paper. We write λmin(A)

and λmax(A) respectively for the minimum and maximum eigenvalue of a matrix

A, Re(λmin(A)) and Re(λmax(A)) respectively for the real part of the minimum

and maximum eigenvalue of a matrix A, λi(A) for the i -th eigenvalue of A,

where A is symmetric and the eigenvalues are ordered from least to greatest90

value, diag(a) for the diagonal matrix with the vector a on its diagonal, and Aij

for the entry of the matrix A on the i -th row and j -th column.

We next summarize the basic graph-theoretical notions used in this paper

(see, for example, [42] and [43] for details). In particular, an undirected graph

G is defined by a set EG ⊂ VG ×VG of edges and a set VG = {1, . . . , N} of nodes.95

We utilize (i, j) ∈ EG for cases when a pair of nodes i and j are neighbors, where

i ∼ j indicates the neighboring relation. Furthermore, the degree of a node is

determined by the number of its neighbors. Denoting di as the degree of node

i, the degree matrix of a graph G, D(G) ∈ RN×N , is defined by D(G) , diag(d),

d = [d1, . . . , dN ]T. A path i0i1 . . . iL is a finite sequence of nodes such that100

ik−1 ∼ ik, k = 1, . . . , L, and a graph G is said to be connected when there is a

path between any pair of distinct nodes. The adjacency matrix of a graph G,

A(G) ∈ RN×N , is defined by [A(G)]ij = 1 when (i, j) ∈ EG and [A(G)]ij = 0

otherwise. The Laplacian matrix of a graph, L(G) ∈ RN×N
+ , is then defined by

L(G) , D(G)−A(G).105

Finally, the following key lemma from [40, Theorem 4.14] is necessary for

the results in this paper.

Lemma 1. For a given dynamical system ẋ(t) = f
(
x(t)

)
with f : Rn → Rn

being continuously differentiable over D = {‖x‖2 < r} and x(t) ∈ Rn, let its

origin be an exponentially stable equilibrium point. Furthermore, let k, λ, and110

r0 be positive constants subject to r0 < r/k such that ‖x(t)‖2 ≤ k‖x(0)‖2e−λt for

all x(0) ∈ D0 and t ≥ 0, where D0 = {‖x‖2 < r0}. Then, there is a continuously

differentiable function V (x) satisfying the inequalities given by

c1‖x‖22 ≤ V (x) ≤ c2‖x‖22, (1)
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∂V

∂x
f
(
x
)
≤ −c3‖x‖22, (2)∥∥∥∥∂V∂x
∥∥∥∥

2

≤ c4‖x‖2, (3)

for all x ∈ D0 with positive constants c1, c2, c3, and c4. If, in addition, f is

continuously differentiable for all x, globally Lipchitz, and the origin is glob-115

ally exponentially stable, then V (x) is defined and satisfies the aforementioned

inequalities for all x ∈ Rn.

3. Generalized Time Transformation Approach-Based Finite-Time

Control

Consider the perturbed dynamical system given by120

ẋ(t) = α(t)f
(
x(t)

)
+ g(t, x(t)), x(0) = x0, (4)

where x(t) ∈ Rn is the state vector, α(t) ∈ R+ is a positive and time-varying

scalar function entitled as “generalized finite-time gain function” (details below),

g(t, x(t)) ∈ Rn is a bounded perturbation term satisfying ‖g(t, x(t))‖2 ≤ g∗,

and f
(
x(t)

)
is a continuously differentiable and globally Lipschitz function. In

addition, let the origin of the nominal dynamical system ẋ(t) = f
(
x(t)

)
be125

globally exponentially stable. Note that the nominal dynamical system ẋ(t) =

f
(
x(t)

)
can represent a controlled dynamics and it can be also considered as

the error dynamics resulting from an original baseline control algorithm, where

the perturbation is set to zero and α(t) is neglected as α(t) = 1. To elucidate

the latter point, we now provide an example.130

Example 1. Consider a simple-yet-illustrative baseline scalar command follow-

ing control algorithm given by ż(t) = u(t) with u(t) = −
(
z(t)− c(t)

)
, where z(t)

is the state, u(t) is the control, and c(t) is a time-varying bounded command

with bounded time rate of change. Defining the error as x(t) , z(t) − c(t),

one can write the corresponding error dynamics in the form given by ẋ(t) =135

−x(t) − ċ(t). If c(t) is constant (i.e., ċ(t) = 0), then the error dynamics
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reduces to ẋ(t) = −x(t), where this is the so-called nominal dynamical sys-

tem with f
(
x(t)

)
= −x(t) for this example. Here, if we choose the control as

u(t) = −α(t)
(
z(t)− c(t)

)
through multiplying the right hand side of the baseline

algorithm with the generalized finite-time gain function α(t), we obtain its time-140

varying version as ż(t) = α(t)
(
−z(t)+c(t)

)
. In this case, the resulting error dy-

namics can be written in the form given by (4); that is, ẋ(t) = α(t)
(
−x(t)

)
−ċ(t)

with g
(
t, x(t)

)
= −ċ(t).

One of the objectives of this paper is to establish a class of generalized finite-

time gain functions α(t) and the corresponding conditions in order to guarantee145

that the solution x(t) of (4) converges to zero as t → τ , where τ ∈ R+ is a

user-defined convergence time. Motivated by this standpoint, we first introduce

the following assumption.

Assumption 1. The generalized finite-time gain function α(t) satisfies the fol-

lowing properties:150

• α(t) is continuously differentiable on t ∈ [0, τ).

• α(t) > m for all t ∈ [0, τ) and for some m > 0.

• limt→τ α(t) =∞.

If one chooses a generalized finite-time gain function α(t) according to As-

sumption 1, then its corresponding generalized time transformation function155

t = θ(s) can be obtained based on the next lemma.

Lemma 2. Consider a generalized finite-time gain function α(t) subject to As-

sumption 1 and the following conditions:

i) dt
ds = d(θ(s))

ds = 1
α(θ(s)) (i.e, α(θ(s))d(θ(s)) = ds).

ii) θ(0) = 0.160

iii) lims→∞ θ(s) = τ .
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If the generalized time transformation function θ(s) is obtained by solving the

differential equation in i) along with the conditions ii) and iii), then the following

statements hold:

a) θ(s) is continuously differentiable and strictly increasing over s ∈ [0,∞).165

b) Let h(s) , d(θ(s))
ds . Then, h(s) is bounded and lims→∞ h(s) = 0. In addition,∫∞

0
h(r)dr = τ .

Proof. To show a), we need to show that d(θ(s))/ds is well-defined and

greater than 0 over s ∈ [0,∞). We first note that the time transformation

function θ(s) is actually a change of time from the stretched infinite-time interval170

s ∈ [0,∞) into the regular prescribed time interval t ∈ [0, τ); and vice versa.

Therefore, α(t) = α(θ(s)). In addition, from i), we have

d(θ(s))

ds
=

1

α(θ(s))
=

1

α(t)
. (5)

Since α(t) > 0 and it is continuously differentiable over t ∈ [0, τ), it is well-

defined on t ∈ [0, τ); hence, d(θ(s))/ds > 0 holds and also well-defined for all

s ∈ [0,∞). As a result, θ(s) is continuously differentiable and strictly increasing175

over s ∈ [0,∞) (see, for example, [44]). Thus, the proof of a) is now complete.

To show b), by the definition of h(s) and (5), we have

h(s) =
1

α(θ(s))
=

1

α(t)
. (6)

Since α(t) is positive definite and bounded from below by m, h(s) is bounded

from above by h∗ , m−1. In addition, ii) and iii) indicates that t → τ as

s→∞ and recall that α(t) satisfies limt→τ α(t) =∞. Therefore, we have180

lim
s→∞

h(s) = lim
s→∞

1

α
(
θ(s)

) = lim
t→τ

1

α(t)
= 0. (7)

Note also that∫ ∞
0

|h(r)|dr =

∫ ∞
0

h(r)dr =

∫ τ

0

d
(
θ(r)

)
=

∫ τ

0

dt = τ. (8)

Thus, h(s) ∈ L1 on stretched infinite-time interval s ∈ [0,∞). Hence, the proof

of b) is also now complete. �
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Figure 1: Plots of the family of α(t) in Example 2 as a is increasing (left) and m is increasing

(right), where the arrow pointing in the increasing direction of a and m. The dashed line

represents α(t) = 1/(τ − t) for comparison purpose.

Remark 1. Lemma 2 establishes the theoretical connection between the gener-

alized finite-time gain functions and their corresponding generalized time trans-185

formation functions. Therefore, in a reverse manner to Lemma 2, one can also

start with a time transformation function t = θ(s) that satisfies the conditions ii)

and iii) and the properties a) and b) of Lemma 2, and then solve the differential

equation i) to obtain the generalized finite-time gain function α(t) subject to As-

sumption 1. As an example, the authors of [3] and [4] choose θ(s) = τ(1− e−s)190

and then obtain α(t) = 1/(τ − t).

In order to elucidate Lemma 2, we next provide candidate generalized finite-

time gain functions α(t).

Example 2. A common finite-time gain function is α(t) = 1/(τ − t) with its

corresponding time transformation function θ(s) = τ(1−e−s). We now consider195

a family of generalized finite-time gain functions defined by α(t) , 1
(τ−t)(mt+a) ,

where m ∈ R+ and a ∈ R+. Here, α(t) satisfies the conditions in Assump-

tion 1. After solving the differential equation i) of Lemma 2, one can obtain

θ(s) = τa(e(a+mτ)s−1)
ae(a+mτ)s+mτ

that satisfies the conditions ii) and iii). Figures 1 and

2 respectively show the plots of α(t) and the corresponding θ(s), as a is in-200

creasing while m is fixed (Figures 1(a) and 2(a)) and as m is increasing while
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(b) a = 0.1, m ∈ [0.01, 2], and τ = 5

Figure 2: Plots of the family of θ(s) in Example 2 as a is increasing (left) and m is increasing

(right), where the arrow pointing in the increasing direction of a and m. The dashed line

represents θ(s) = τ(1− e−s) for comparison purpose.

a is fixed (Figures 1(b) and 2(b)). In these figures, the arrows point in the

increasing direction of a and m. In addition, the common finite-time gain

function α(t) = 1/(τ − t) and its corresponding time transformation function

θ(s) = τ(1 − e−s) are also plotted for reference (dashed lines). Note that pa-205

rameter a affects the initial gain of α(t) and parameter m affects the time rate

of change of α(t) during the transient stage. Note also that different general-

ized finite-time gain functions α(t) lead to different transient behaviors of the

system, we refer to Section 4 for an illustrative numerical example.

Building on the result of Lemma 2, we now show the convergence of the solu-210

tion of the perturbed dynamical system given by (4) to zero over the prescribed

regular time interval [0, τ).

Theorem 1. Consider the perturbed dynamical system given by (4). If the gen-

eralized finite-time gain function α(t) satisfies Assumption 1 and there exists a

corresponding generalized time transformation function θ(s) as stated in Lemma215

2, then limt→τ x(t) = 0.

Proof. Since x(t) = x(θ(s)), define x̄(s) , x(θ(s)). Then, the perturbed

dynamical system given by (4) can be rewritten in the stretched infinite-time
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interval s ∈ [0,∞) as

x̄′(s) ,
dx̄(s)

ds
=

dθ(s)

ds

dx̄(s)

dθ(s)

=
1

α(θ(s))

(
α(θ(s))f

(
x̄(s)

)
+ g
(
θ(s), x̄(s)

))
=f
(
x̄(s)

)
+

1

α(θ(s))
g
(
θ(s), x̄(s)

)
=f
(
x̄(s)

)
+ h(s)g

(
θ(s), x̄(s)

)
, x̄(0) = x0, (9)

where h(s) , 1/α(θ(s)) = 1/α(t) = d(θ(s))/ds as shown in Lemma 2. Define220

now p(s, x̄(s)) , h(s)g
(
θ(s), x̄(s)

)
∈ Rn. Note that both h(s) and g

(
θ(s), x̄(s)

)
are respectively bounded by h∗ and g∗; hence, p(s, x̄(s)) is also bounded; that

is, ‖p(s, x̄(s))‖2 ≤ p∗ , h∗g∗. Now, one can rewrite (9) as

x̄′(s) = f
(
x̄(s)

)
+ p(s, x̄(s)), x̄(0) = x0. (10)

Since the origin of the nominal dynamical system ẋ(t) = f
(
x(t)

)
of (4) is glob-

ally exponentially stable, the result of this theorem follows directly from Lemma225

4.6 of [40]. Yet, we explicitly derive it here for the further analysis later. Specif-

ically, for the nominal dynamical system, there exists a continuous function

V (x) satisfying the inequalities (1), (2) and (3) by Lemma 1. Utilizing this

Lyapunov function and taking its derivative with respect to s ∈ [0,∞) along

the trajectories of (10), we have230

V ′(x̄) =
∂V

∂x̄

(
f
(
x̄(s)

)
+ p(s, x̄(s))

)
=
∂V

∂x̄
f
(
x̄(s)

)
+
∂V

∂x̄
p(s, x̄(s))

≤−c3‖x̄(s)‖22 + c4‖x̄(s)‖2‖p(s, x̄(s))‖2

≤−(1− θ)c3‖x̄(s)‖22 − θc3‖x̄(s)‖22 + c4‖x̄(s)‖2‖p(s, x̄(s))‖2

≤−(1− θ)c3‖x̄(s)‖22, ∀ ‖x̄(s)‖2 ≥
c4‖p(s, x̄(s))‖2

θc3
, (11)

where θ ∈ (0, 1) and the third inequality comes from (2) and (3). By Theorem

4.19 of [40], the system (10) is input-to-state stable. Note that input-to-state

stability implies that when the input converges to zero as s → ∞, so does the

state (see, for example, Exercise 4.58 in [40]). From Lemma 2, lims→∞ h(s) = 0;
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hence, lims→∞ p(s, x̄) = 0. As a result, x̄(s)→ 0 as s→∞. Finally, since t→ τ235

as s→∞, limt→τ x(t) = 0 follows. �

Remark 2. Although the dynamical system given by (4) is perturbed, Theorem

1 shows that its state vector still converges to zero in a user-defined convergence

time τ owing to the generalized finite-time gain function α(t). In addition, the

perturbed dynamical system given by (4) often represents the error dynamics as240

discussed in Example 1 (see also, for example, [3, 4, 34] and references therein).

In particular, the dynamics in, for example, [3, 4, 34] are linear; hence, the

origins of their nominal systems are globally exponentially stable and readily

satisfy the conditions of the perturbed dynamical system given by (4). Thus, for

time-critical applications, if one designs a control algorithm for the dynamical245

system such that its error dynamics can be put into the form given by (4), its

finite-time convergence is then guaranteed. To summarize, consistent with the

discussion given in Example 1, the following three-step procedure can be adopted

for designing a control algorithm for time-critical applications:

• Design a baseline control algorithm to exponentially satisfy the given objectives250

of a considered application over [0,∞).

• Find a generalized finite-time gain function α(t) that satisfies Assumption 1

and its corresponding generalized time transformation function θ(s) along the

lines stated in Lemma 2.

• From the baseline control algorithm, obtain the error dynamics and compare255

it to (4). After that, come back to the baseline controller design process for

introducing the generalized finite-time gain function α(t) and modify the con-

troller such that the error dynamics has the form of (4).

To illustrate the design procedure in Remark 2, we provide the following

examples.260

Example 3. Consider the pendulum equation given by

θ̈(t) + sin θ(t) + bθ̇(t) = cu(t), (12)
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where b and c are positive coefficients. Suppose that the objective is to design

a control signal u(t) for the pendulum to reach an angle θ(t) = δ at t = τ . To

address this problem, let x1(t) = θ(t)− δ and x2(t) = θ̇(t). Then, one can write

ẋ1(t) = x2(t), (13)

ẋ2(t) = − sin(x1(t) + δ)− bx2(t) + cu, (14)

Following the design procedure proposed in Remark 2, we start with the baseline265

controller. Utilizing the backstepping design process with the auxiliary state

z(t) , kxx1(t) + x2(t) and the Lyapunov function V (x) = 1
2x

2
1(t) + 1

2z
2(t), one

can readily obtain the intermediate control signal given by

u(t) =
1

c
(−x1 − (kx − b)(−kxx1(t) + z(t)) + sin(x1(t) + δ)− kzz(t)) . (15)

With this control signal, the system given by (13) and (14) becomes

ẋ1(t) = −kxx1(t) + z(t), (16)

ż(t) = −x1 − kzz(t). (17)

By choosing kx and kz such that the matrix M ,

−kx 1

−1 −kz

 is Hurwitz,270

the origin of the system given by (16) and (17) becomes globally exponentially

stable. We now put (16) and (17) into the form given by (4); that is,ẋ1(t)

ż(t)

 = α(t)

−kx 1

−1 −kz

x1(t)

z(t)

 . (18)

Next, we go back to the design process and redefine z(t) , kxx1(t) + 1
α(t)x2(t),

and follow the same procedure to obtain the finite-time controller. The reason

for revisiting the design process is that α(t) is a function of time; hence when275

introducing it into the auxiliary state z(t) and taking the time derivative, the

finite-time controller would contain the α̇(t) term. Finally, the actual finite-time

control signal that we obtain in this case has the form

u(t) =
α(t)

c

(
− α(t)x1 −

(
kx −

α̇(t)

α2(t)
− b

α(t)

)
(−α(t)kxx1(t) + α(t)z(t))

13



+
sin(x1(t) + δ)

α(t)
− kzα(t)z(t)

)
. (19)

Although the error dynamics given by (18) has no perturbations, we know from

the result of Theorem 1 that the controller (19) can handle bounded perturba-280

tions.

To show the efficacy of the proposed approach, we consider the system given

by (13) and (14) with b = 1, c = 3, δ = π
2 subject to the controller (19)

with α(t) = 1
(τ−t)(mt+a) , where m = 0, a = 0.25 and τ = 1, and kx = 1,

kz = 6. In addition, a constant perturbation term p = 2 is added into the285

right hand side of the dynamics of x2(t) given by (14). Figure 3 shows the

closed-loop system responses with the proposed finite-time controller (19) for

four different initial conditions. Specifically, x1(t) and z(t) approach zero as

t approaches τ , as expected. Thus, the objective that θ(t) approaches δ as t

approaches τ is met. Yet, by definition z(t) = kxx1(t)+ 1
α(t)x2(t), x1(t) and z(t)290

approaching zero does not necessarily indicate that x2(t) also approaches zero.

Conditions to guarantee the boundedness of the control algorithm are discussed

in Theorem 2. Note that here we focus on developing control algorithms for

applications that require the objectives to be met in a specific time interval, for
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Figure 3: The norm ‖[x1, z]T‖2 in semi-logarithmic scale for four different initial conditions

(left) and the corresponding control inputs (right) of the pendulum system in Example 3.
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instance, the missile engagement application, and this example shows that such295

finite-time control algorithms can be designed for a class of systems that can be

stabilized via state feedback stabilization methods such as feedback linearization,

backstepping, passivity-based control, and control Lyapunov functions, to name

but a few examples. One future research direction can consider stabilizing the

system beyond t = τ . To this end, we next briefly introduce a motivational300

example.

Example 4. In this example, we design a sliding mode controller that consists of

two parts. The first part utilizes the result of Theorem 1 and the proposed design

procedure in Remark 2 to develop a control algorithm for driving the dynamical

system to the manifold z(t) = 0 in a user-defined finite time τ (reaching phase).305

The second part maintains the system on the manifold z(t) = 0 and stabilizes the

origin of the system (sliding phase). For this purpose, consider the dynamical

system given by

ẋ1(t) = x2
1(t)− x3

1(t) + x2(t), (20)

ẋ2(t) = u(t). (21)

Define now z(t) , x2(t) + x2
1(t) + kxx1(t), where kx is a positive gain. Similar

to Example 3, we utilize backstepping design method and the Lyapunov function310

V (x1, z) = 1
2x

2
1(t) + 1

2z
2(t) to obtain the finite-time controller for the reaching

phase

u(t) = −x1(t)− (2x1(t) + kx)(−kxx1(t)− x3
1(t) + z(t))− kzα(t)z(t), (22)

where kz is also a positive gain. With this controller, one can write

ż(t) = −kzα(t)z(t)− x1(t). (23)

Since the controller (22) results in V̇ (·) < 0 on t ∈ [0, τ), x1(t) can be consid-

ered as a bounded perturbation in (23); hence, (23) has the form of (4). As a315

consequence, the result of Theorem 1 indicates that the controller (22) drives the

system given by (20) and (21) to the manifold z(t) = x2(t)+x2
1(t)+kxx1(t) = 0

at τ time units.
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Next, suppose that the second state of the system subject to some bounded

perturbation p(t) such that |p(t)| < p̄ and p̄ is known. Here, one can use a320

standard method for designing the sliding mode controller as

u(t) =−
(
2x1(t) + kx

)(
− kxx1(t)− x3

1(t) + z(t)
)
− kzz(t)− p̄ tanh(10z). (24)

We note that the function sign(z) can be approximated by tanh(hx) with h being

an appropriate positive number. Hence, we utilize tanh(10z) in (24) for reducing

the chattering phenomenon. Combining (22) and (24), we obtain

u(t) =

−x1(t)− (2x1(t) + kx)(−kxx1(t)− x3
1(t) + z(t))− kzα(t)z(t), if t < τ

−
(
2x1(t) + kx

)(
− kxx1(t)− x3

1(t) + z(t)
)
− kzz(t)− p̄ tanh(10z). if t ≥ τ

(25)

To show the effect of the controller (25), we consider α(t) = 1
(τ−t)(mt+a) , where325

m = 0, a = 0.25 and τ = 0.25, and kx = 2, kz = 1. In addition, a perturbation

p = 2 sin(t) is introduced into the dynamics of x2(t) given by (21). Figure

4 shows that the system reaches the manifold z(t) = 0 at τ = 0.25 seconds

as expected. For t ≥ τ , the states x1(t) and x2(t) are stabilized through the

sliding mode controller. We note that although in this example there is only330

a subtle change in the controller u(t) at time t = τ when the controller is

switched, it is possible that there can be a jump. For such cases, a low-pass

filter can be also utilized for the transition for avoiding the potential jump. In

general, this example shows that the proposed finite-time controller can be used to

accelerate (or decelerate) the stabilization process of the system over the infinite335

horizon when utilized in conjunction with an additional feedback controller. Once

again, the stability analysis of the resulting closed-loop system under this kind of

switching controller can be investigated as a future research and it goes beyond

the results of this paper.

Remark 3. From the third line in (11), we have340

V (x̄(∞))− V (x̄(0))≤−c3
∫ ∞

0

‖x̄(r)‖22dr + c4

∫ ∞
0

‖x̄(r)‖2‖p
(
r, x̄(r)

)
‖2dr, (26)

where V (x̄(∞)) , lims→∞ V (x̄(s)) = V (0) = 0 from the result of Theorem 1.

In addition, the result of Theorem 1 indicates that x̄(s) is bounded; hence, we
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Figure 4: The state evolution of the system given by (20) and (21) (left) under the controller

given by (25) (right) in Example 4.

can consider ‖x̄(s)‖2 ≤ x̄∗. Therefore, from (26), one can write∫ ∞
0

‖x̄(r)‖22dr≤ 1

c3

(
V (x̄(0)) + c4x̄

∗
∫ ∞

0

‖p
(
r, x̄(r)

)
‖2dr

)
≤ 1

c3

(
V (x̄(0)) + c4x̄

∗
∫ ∞

0

|h(r)|‖g
(
θ(r), x̄(r)

)
‖2dr

)
≤ 1

c3

(
V (x̄(0)) + c4x̄

∗g∗
∫ ∞

0

|h(r)|dr
)

=
V (x̄(0))

c3
+
c4x̄
∗g∗τ

c3
, (27)

where the last equality results from (8). We note that the left hand side of (27)

can be considered as an energy of x̄(s), and therefore is of x(t), and the right345

hand side of (27) is a constant. Thus, x̄(s) is a finite energy signal. The upper

bound of this energy depends on V (x̄(0)) and the product of τ with the bounds

of both the state and the perturbation term. In particular, if the user-defined

convergence time τ is selected to be large, then the upper bound of this energy

given by the right hand side of (27) also increases to suppress the effect of the350

perturbation term. Yet, V (x̄(0)) is independent of τ and can be interpreted as

the energy required to drive the system from x̄0 to 0. In other words, when the

perturbations on the dynamics are negligible, the system requires a fixed amount

of energy to go from an initial value to zero equilibrium point regardless of the

17



chosen τ . One can also consider the limit of a dynamical system’s actuator355

when choosing τ . A workaround to prevent exceeding an actuator’s performance

is discussed in the next remark.

Remark 4. A practical approach to overcome the problem of exceeding actua-

tor’s performance is to first drive the system to a point or a region, where we

know that it is feasible to achieve the objective in a user-defined convergence360

time τ without exceeding actuator’s limit, and then activate the finite-time al-

gorithm. Consider now that a feasible region Ψ is theoretically defined. The

generalized finite-time gain function can then be redefined as

β(t) ,

 α(0), x 6∈ Ψ,

α(t− t0), x ∈ Ψ,
(28)

where t0 is the time when the system enters the region Ψ providing that the

system is capable of keeping track of execution time and detecting whether or365

not it is in Ψ. Note that β(t) is a continuous function and identical to α(t)

when t0 = 0. By replacing α(t) by β(t) in (4), the total execution time of the

system is now t0 + τ . In particular, for the first t0 time unit, the dynamics

is time-invariant and is heading toward the feasible region Ψ. For t ≥ t0, the

dynamics becomes time-varying and meets the objective in τ . An example of the370

feasible region is Ψ = {x(t) ∈ Rn : ‖x‖∞ ≤ x∗} with x∗ ∈ R+ being a known

defined threshold.

Finally, the next theorem establishes the boundedness of ẋ(t) over t ∈ [0, τ).1

Theorem 2. Consider the perturbed dynamical system given by (4). Consider,

in addition, the following conditions:375

i) α̇(t)
α2(t) is bounded on t ∈ [0, τ), and limt→τ

α̇(t)
α2(t) = κ <∞.

1Similar to the discussion in Example 1, if we consider the control signal as u(t) =

α(t)f
(
x(t)

)
, then it is also bounded as a result of the following theorem as well as from

the boundedness of g
(
t, x(t)

)
.

18



ii) r̄′(s) =

(
df
(
x̄(s)
)

dx̄ + dα(θ(s))
dθ(s) h2(s)In

)
r̄(s) is globally exponentially stable,

where r(t) = r
(
θ(s)

)
and r̄(s) , r

(
θ(s)

)
.

Then, ẋ(t) is bounded for t ∈ [0, τ).

Proof. From (4), if we show that r(t) , α(t)f
(
x(t)

)
is bounded over t ∈380

[0, τ), then we can directly conclude that ẋ(t) is bounded over t ∈ [0, τ) since

g
(
t, x(t)

)
is bounded over t ∈ [0, τ). For this purpose, we now write the time

derivative of r(t) as

ṙ(t) = α̇(t)f
(
x(t)

)
+ α(t)ḟ

(
x(t)

)
= α̇(t)f

(
x(t)

)
+ α(t)

df
(
x(t)

)
dx

dx

dt

= α̇(t)

(
1

α(t)
r(t)

)
+ α(t)

df
(
x(t)

)
dx

(
r(t) + g(t, x(t))

)
=

(
α(t)

df
(
x(t)

)
dx

+
α̇(t)

α(t)
In

)
r(t) + α(t)

df
(
x(t)

)
dx

g(t, x(t)), (29)

where the third equality comes from the definition of r(t) and (4). Since r(t) =

r
(
θ(s)

)
, define r̄(s) , r

(
θ(s)

)
. Similar to the proof of Theorem 1, one can385

rewrite (29) in the stretched infinite-time interval s ∈ [0,∞) as

r̄′(s) =

(
df
(
x̄(s)

)
dx̄

+
dα(θ(s))

dθ(s)
h2(s)In

)
r̄(s) +

df
(
x̄(s)

)
dx̄

g
(
θ(s), x̄(s)

)
, (30)

where h(s) , 1/α(θ(s)). Since f
(
x(t)

)
is globally Lipschitz, the second term of

(30) is bounded. In addition, by conditions i) and ii), we conclude that r̄(s) is

a bounded solution to the dynamical system (30) on the stretched infinite-time

interval s ∈ [0,∞) (see Remark 5 for more explanation on conditions i) and ii)).390

Therefore, r(t) is bounded over t ∈ [0, τ), where this implies the boundedness

of ẋ(t) over t ∈ [0, τ). �

Remark 5. In the proof of Theorem 2, ẋ(t) is bounded when r(t) = α(t)f
(
x(t)

)
is bounded. Note that limt→τ α(t) =∞ by Assumption 1 and limt→τ f

(
x(t)

)
= 0

by Theorem 1. Therefore, r(t) is bounded when f
(
x(t)

)
converge to zero before395

α(t) becomes very large. Indeed, conditions i) and ii) of Theorem 2 capture this

19



phenomenon. Specifically, the term α(t)
df
(
x(t)
)

dx in (29) represents the rate of

change of r(t) along f
(
x(t)

)
and the term α̇(t)

α(t) In in (29) is the rate of change

of r(t) along α(t). When transforming these terms into the stretched infinite-

time interval s ∈ [0,∞), the condition ii) apprehends the above requirement. In400

addition, we note that

dα(θ(s))

dθ(s)
=

dα(t)

dt
= α̇(t), (31)

while h2(s) = 1/α2(t); hence, dα(θ(s))
dθ(s) h2(s) = α̇(t)

α2(t) . This induces condition i).

We refer to Remark 7 and Figure 5 for an illustration of this point.

Remark 6. The conditions i) and ii) of Theorem 2 are the generalized forms

of the conditions in, for example, [3, 4] and [45]. Specifically, in these papers,405

α(t) = 1/(τ − t) and α̇(t) = α2(t); hence, the condition i) automatically holds.

In addition, these papers consider linear systems; thus, df
(
x̄(s)

)
/dx̄ is often

depicted by a Hurwitz matrix such as df
(
x̄(s)

)
/dx̄ = γM with γ ∈ R+ being a

design parameter. As a consequence, assumption ii) simplifies to the requirement

that the matrix (γM + In) is Hurwitz. In this case, since M is Hurwitz, it is410

straightforward to show that by choosing γ > −1/Re
(
λmax(M)

)
, the matrix

(γM + In) is guaranteed to be Hurwitz.

Remark 7. Note for the candidate family of generalized finite-time gain func-

tions utilized in Example 2, α(t) , 1
(τ−t)(mt+a) , that α̇(t) = (2mt−mτ+a)α2(t);

hence, the condition i) of Theorem 2 is satisfied with κ = mτ + a and415

this is also the upper bound of α̇(t)/α2(t) over t ∈ [0, τ). Note also that

lims→∞
dα(θ(s))

dθ(s) h2(s) = κ. To illustrate this point, Figure 5 shows the plot

of α̇(t)
α2(t) over the regular prescribed time interval [0, τ ] (left) and the plot of

its identical version dα(θ(s))
dθ(s) h2(s) over the stretched infinite-time interval [0,∞)

(right) with a = 0.1, m = 0.1, and τ = 5, and the dashed line represents420

κ. In addition, similar to Remark 6, as applied to linear systems with

df
(
x̄(s)

)
/dx̄ , γM being a Hurwitz matrix, the assumption ii) is satisfied when

the matrix (γM + κIn) is Hurwitz (Interested readers can refer to Example 9.6,
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Figure 5: Plot of
α̇(t)

α2(t)
over the regular prescribed time interval [0, τ ] (left) and plot of

its identical version
dα(θ(s))
dθ(s)

h2(s) over the stretched infinite-time interval [0,∞) (right) for

α(t) , 1
(τ−t)(mt+a) with a = 0.1, m = 0.1, and τ = 5. The dashed line represents the upper

bound κ.

Corollary 9.1 and Lemma 9.5 of [40] for similar analysis). Once again, since

M is Hurwitz, when γ > −κ/Re
(
λmax(M)

)
, (γM + κIn) is guaranteed to be425

Hurwitz. Note that in Example 3, γ = 1 and the matrix M ,

−kx 1

−1 −kz


with kx = 1 and kz = 6 has λmax(M) = −1.2087. In addition, with the choice

of α(t) = 1
(τ−t)(mt+a) , where m = 0, a = 0.25 and τ = 1, we have κ = 0.25

and the condition γ > −κ/Re
(
λmax(M)

)
= 0.2068 is readily satisfied. Hence,[

ẋT
1 (t) żT(t)

]T
is bounded, which indicates that the controller u(t) given by430

(19) is also uniformly bounded on t ∈ [0, τ).

4. Finite-Time Distributed Control of Networked Multiagent Sys-

tems

During the last two decades, networked multiagent systems have started

to become a relatively mature research field addressing important problems435

through local interactions such as consensus, leader-follower, flocking, formation

control, containment control; to name but a few examples (see, for example,

[42, 46, 47, 48] and references therein). In this section, we present a theoretical

application of our findings in Section 3 to the distributed control of networked

multiagent systems to illustrate their effectiveness. In particular, we consider440
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the leader-follower problem with a networked multiagent system containing N

agents subject to a connected and undirected graph G. To this end, let the

baseline distributed control algorithm of agents be (see, for example, [49])

ẋi(t) = −γ

∑
i∼j

(
xi(t)− xj(t)

)
+ ki

(
xi(t)− c(t)

) , xi(0) = xi0, (32)

where xi(t) ∈ R is the state of agent i, i = 1, . . . , N , c(t) ∈ R is the bounded

command with bounded time rate of change, γ ∈ R+ is a scalar gain, ki = 1 if445

agent i is the leader, and ki = 0 otherwise.

Defining the error as x̃i(t) , xi(t)− c(t), one can write

˙̃xi(t) = −γ

∑
i∼j

(
x̃i(t)− x̃j(t)

)
+ kix̃i(t)

− ċ(t), x̃i(0) = x̃i0. (33)

By defining x̃(t) , [x̃1(t), . . . , x̃N (t)]T, one can obtain the compact form of the

error dynamics in (33) as

˙̃x(t) = −γ (L(G) +K) x̃(t)− 1N ċ(t), x̃(0) = x̃0, (34)

where L(G) ∈ RN×N is the Laplacian matrix of the communication graph G450

and K = diag([k1, k2, . . . , kN ]T). Here, − (L(G) +K) is a Hurwitz matrix (see,

for example, Lemma 3.3 of [49]).

Next, by multiplying the baseline algorithm in (32) with the generalized

finite-time gain function α(t), we obtain a time-varying distributed control al-

gorithm for time-critical applications in the form455

ẋi(t) =ui(t), xi(0) = xi0, (35)

ui(t) =−γα(t)

∑
i∼j

(
xi(t)− xj(t)

)
+ ki

(
xi(t)− c(t)

) . (36)

In this case, the resulting error dynamics becomes

˙̃x(t) = −γα(t) (L(G) +K) x̃(t)− 1N ċ(t), x̃(0) = x̃0, (37)

which clearly satisfies the form of the perturbed dynamical system given by

(4) with f
(
x(t)

)
= −γ (L(G) +K) x̃(t) and g

(
t, x(t)

)
= −1N ċ(t). The next

corollary is now immediate.
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Corollary 1. Consider the networked multiagent system with N agents given460

by (35) and (36), where agents exchange information using their local measure-

ments through an undirected and connected graph topology G. In addition, con-

sider that the generalized finite-time gain function α(t) satisfies Assumption 1,

limt→τ
α̇(t)
α2(t) = κ <∞, and there exists a corresponding generalized time trans-

formation function θ(s) as stated in Lemma 2. By defining M , − (L(G) +K)465

and choosing γ > −κ/Re(λmax(M)), then limt→τ x(t) = c(τ) holds and ẋ(t) is

bounded for t ∈ [0, τ).

Proof. The results directly follows from Theorems 1 and 2 as well as

Remark 7. �

We are now ready to present an example to illustrate the result in Corollary 1.470

Example 5. In this example, we consider a multiagent system under the algo-

rithm given by (35) and (36) with 5 agents subject to a ring graph, where the first

agent is the leader and the rest are followers. Here, we choose the user-defined

convergence time as τ = 5 seconds and the command as c(t) = 5 + 0.75 sin(t).

Along the lines of the discussion in Example 2 of Section 3, the family of gen-475

eralized finite-time gain functions defined by α(t) , 1
(τ−t)(mt+a) satisfies As-

sumption 1 and there exists a corresponding family of generalized time trans-

formation functions θ(s) as stated in Lemma 2. In what follows, we consider

the two cases: We choose a = 0.5 and m = 0.005 for the first case and choose

a = 0.1 and m = 0.085 for the second case. Based on Remark 7, note that480

M = − (L(G) +K) is Hurwitz and the upper bounded of α̇(t)/α2(t) on t ∈ [0, τ)

is κ = mτ + a = 0.525 for both cases; hence, we obtain −κ/λmax(M) = 3.7717.

By choosing γ = 4 for both cases, the assumptions of Theorem 2 are now satis-

fied; hence, ẋ(t) is bounded over t ∈ [0, τ). The same random initial conditions

for agents are utilized for both cases.485

Figure 6 shows the response of the networked multiagent system under the

control algorithm given by (36) with α(t) , 1
(τ−t)(mt+a) , a = 0.5, m = 0.005,

τ = 5 seconds, and γ = 4, where the solid lines are the states of agents (left) and

their time derivative (right), and the dashed line shows the command. Similarly,

23



0 1 2 3 4 5
-2

0

2

4

6

0 1 2 3 4 5
-10

-5

0

5

10

15

Figure 6: Response of the networked multiagent system under algorithm (36) with α(t) ,
1

(τ−t)(mt+a) , a = 0.5, m = 0.005, τ = 5 seconds, and γ = 4, where the solid lines are the

states of agents (left) and the time derivative of agents (right), and the dashed line shows the

tracking command.
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Figure 7: Response of the networked multiagent system under algorithm (36) with α(t) ,
1

(τ−t)(mt+a) , a = 0.1, m = 0.085, τ = 5 seconds, and γ = 4, where the solid lines are the

states of agents (left) and the time derivative of agents (right), and the dashed line shows the

tracking command.

Figure 7 shows the response of the networked multiagent system under algorithm490

(36) with α(t) , 1
(τ−t)(mt+a) , a = 0.1, m = 0.085, τ = 5 seconds, and γ = 4,

where the solid lines are the states of agents (left) and their time derivative

(right), and the dashed line shows the command. As expected from the result

of Corollary 1, the states of all agents approach to the command c(t) as t →

τ = 5 seconds. Note that when t = 0, α(0) = 1/(τa); hence, the parameter495
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a affects the initial value of α(t). Moreover, from discussion in Remark 7,

α̇(t) = (2mt −mτ + a)α2(t); hence, m affects the time rate of change of α(t).

Since the second case has a smaller value for a, the initial value of α(t) in

the second case is larger than in the first case. This is depicted by the higher

initial values of ẋ(t) in the right plot of Figure 7 compared to the one in Figure500

6. Finally, as expected from Theorem 2, the right plots show that ẋi(t) remains

bounded over t ∈ [0, τ). In general, different values of a and m in both cases lead

to different transient behaviors of the resulting networked multiagent system.

5. Conclusion

For contributing to the recent studies on finite-time control based on the time505

transformation approach, we investigated a new class of scalar, time-varying

gain functions entitled as “generalized finite-time gain functions.” We showed

how these functions have the capability to convert an original baseline control

algorithm into a time-varying one to allow the system to be executed over a

prescribed time interval. We also rigorously showed all the stability conditions510

with regard to the proposed family of generalized finite-time gain functions that

guarantee the boundedness and convergence of the state and control signals

when the considered class of dynamical systems are subject to perturbations.

The results were then utilized to propose a procedure for designing finite-time

algorithms and illustrated with numerical examples. This indicates that the515

proposed method is applicable to, but not limited to, a class of nonlinear systems

and multiagent systems. Finally, we presented an application of our theoretical

findings to distributed control of networked multiagent systems over a prescribed

time interval.
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