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Abstract—This paper contributes to the studies in control
of multiagent networks as systems. This class of multiagent
networks consists of floating agents (i.e., agents that exchange
local information) and driver agents (i.e., agents that not only
exchange local information but also take input and output
roles), where control algorithms are applied to the actuators
of the driver agents based on the measurements collected from
their sensors for the purpose of influencing the overall behavior
of the resulting system. Specifically, we consider time-critical
applications in the control of multiagent networks as systems.
To this end, a finite-time control approach is proposed based
on a recent time transformation method. The key feature of this
method is that it guarantees execution of control algorithms
over a prescribed time interval [0, T ), where T is a user-
defined convergence time, based on analysis performed over
a stretched, infinite-time interval [0,∞). Utilizing this method
for finite-time control of multiagent networks as systems, we
discuss user-defined finite-time convergence of the resulting
system regardless of the initial conditions of agents and show a
separation principle of the proposed time-critical algorithm.
A numerical example is also presented to demonstrate the
proposed system-theoretical results.

I. INTRODUCTION

This paper contributes to the studies in control of mul-
tiagent networks as systems (see, e.g., [Chapter 10, 1]).
This class of multiagent networks consists of floating agents
and driver agents, where the former agents exchange local
information through consensus or consensus-like algorithms
and the latter agents not only exchange local information but
also take input and output roles in the system. Here, control
algorithms of interest are applied to the actuators of the
driver agents based on the measurements collected from their
sensors for the purpose of influencing the overall behavior
of the resulting system. An example multiagent network as
a system is depicted in Figure 1.
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Fig. 1. An example multiagent network as a system, where circles denote
the floating agents, squares denote the driver agents, dashed lines denote the
local information exchange between all agents (graph topology), and solid
lines denote the input-output (feedback) interaction between driver agents
and a given control algorithm of interest.

In this paper, we consider time-critical applications in the
control of multiagent networks as systems. In particular, a
finite-time control approach is proposed based on a recent
time transformation method [2], [3]. The key feature of
this method is that it guarantees execution of control algo-
rithms over a prescribed time interval [0, T ), where T is a
user-defined convergence time, based on analysis performed
over a stretched, infinite-time interval [0,∞). Utilizing this
method for finite-time control of multiagent networks as
systems, we discuss user-defined finite-time convergence of
the resulting system regardless of the initial conditions of
agents and show a separation principle of the proposed time-
critical algorithm.

Finite-time control offers an appealing framework for
time-critical applications of dynamical systems. We start with
the seminal papers [4], [5], where the authors define finite-
time stability for non-smooth dynamical systems. There
exist many studies in the multiagent networks literature that
utilize and generalize the results in these two (and similar)
papers, where the finite-time convergence depends on the
initial conditions of agents. The studies documented in [6]–
[12] address this problem by upper bounding the finite-time
convergence time and the studies documented in [2], [3],
[13]–[22] propose system-theoretic tools for guaranteeing
user-defined finite-time convergence regardless of the initial
conditions of dynamical systems.

As noted above, the contribution of this paper builds on
the novel time transformation method introduced in [2], [3]
that results in smooth control algorithms (the studies in [16]–



[22] are more related than the other aforementioned ones to
the contributions documented in these two papers, where we
refer to [2], [3] for important differences). Our motivation
behind in utilizing and generalizing the results in [2], [3]
is primarily owing to the fact that their time transformation
method allows one to use well-established system-theoretical
tools proposed over infinite-time intervals [0,∞) for reaching
guarantees over the user-defined prescribed time interval
[0, T ). This key aspect here allows us to show the points
outlined in the second paragraph.

The content of this paper is as follows. Specifically, Sec-
tion II introduces the necessary mathematical preliminaries.
The proposed finite-time control approach for multiagent
networks as systems is given in Section III. A numerical
example, which demonstrate the proposed approach, is then
presented in Section IV. Finally, concluding remarks are
summarized in Section V.

II. MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard. Specif-
ically, R, Rn, and Rn×m respectively denote the set of real
numbers, n×1 real column vectors, and n×m real matrices;
R+ and Rn×n

+ (resp., Rn×n
+ ) respectively denote the set

of positive real numbers and n × n positive-definite (resp.,
positive semi-definite) real matrices; and 0n, 1n, 0n×n, and
In respectively denote the n×1 vector of all zeros, the n×1
vector of all ones, the n × n zero matrix, and the n × n
identity matrix. In addition, we write (·)T for transpose, (·)−1
for inverse, ‖ · ‖2 for the Euclidian norm, λmin(A) (resp.,
λmax(A)) for the minimum (resp., maximum) eigenvalue of
the symmetric matrix A, λi(A) for the i-th eigenvalue of A
(A is symmetric and the eigenvalues are ordered from least
to greatest value), [A]ij for the entry of the of the matrix A
on the i-th row and j-th column.

We now concisely overview several notions from graph
theory (we refer to, e.g., [1] for details). In particular, an
undirected graph G is defined by a set VG = {1, . . . , N} of
nodes and a set EG ⊂ VG×VG of edges. Repeated edges and
self-loops are not allowed. If (i, j) ∈ EG , then the nodes i
and j are neighbors and the neighboring relation is indicated
with i ∼ j. The degree of a node is given by the number
of its neighbors. Letting di be the degree of node i, then
the degree matrix of a graph G, D(G) ∈ RN×N , is given by
D(G) = diag(d), d = [d1, . . . , dN ]T. A path i0i1 . . . iL is a
finite sequence of nodes such that ik−1 ∼ ik, k = 1, . . . , L,
and a graph G is connected if there is a path between any
pair of distinct nodes. The adjacency matrix of a graph G,
A(G) ∈ RN×N , is given by [A(G)]ij = 1 if (i, j) ∈ EG
and [A(G)]ij = 0 otherwise. The Laplacian matrix of a
graph, L(G) ∈ RN×N

+ , is given by L(G) = D(G)−A(G). In
this paper, we consider that a given multiagent network can
be modeled by a connected, undirected graph G with nodes
and edges respectively representing agents and inter-agent
communication links.

Finally, the following lemma is necessary.

Lemma 1 [Fact 2.17.1, 23]. Let A ∈ Rn×n, B ∈ Rn×m,
and D ∈ Rm×m. Assume that A and D are nonsingular.
Then, [

A B
0m×n D

]−1
=

[
A−1 −A−1BD−1
0m×n D−1

]
. (1)

III. FINITE-TIME CONTROL OF MULTIAGENT
NETWORKS AS SYSTEMS

We first introduce the multiagent networks as systems
setup considered in this paper. As discussed in Section I (see
also Figure 1), this class of multiagent networks consists
of floating agents and driver agents (see, e.g., [Chapter
10, 1]), where dynamics of each agent satisfies a single
integrator form. Specifically, we propose that the floating
agents execute the dynamics given by

ẋi(t) = αλ(t)
[
−
∑
i∼j

(
xi(t)− xj(t)

)]
, (2)

to locally exchange their state information xi(t). In addition,
we propose that the driver agents execute the dynamics given
by

ẋi(t) = αλ(t)
[
−
∑
i∼j

(
xi(t)− xj(t)

)
+ ui(t)

]
, (3)

and yi(t) = xi(t) to not only locally exchange their state
information xi(t) but also take input and output roles in the
system, where ui(t) denotes their control inputs and yi(t)
denotes their output measurements. Building on the finite-
time control results documented in [2], [3], we consider that
the resulting system evolves over the user-defined prescribed
time interval [0, T ) with T ∈ R+ being a given user-defined
convergence time. In addition, α ∈ R+ is a gain and λ(t) =
1/(T − t) in (2) and (3).

The above multiagent network as a system setup, which
consists of a total of N agents that exchange information
using their local measurements according to a connected,
undirected graph G, can be compactly written as

ẋ(t) = αλ(t)
(
− L(G)x(t) +Bu(t)

)
, x(0) = x0, (4)

y(t) = BTx(t), (5)

where x(t) =
[
x1(t), x2(t), . . . , xN (t)

]T ∈ RN denotes
the aggregated state vector that captures the individual states
of floating and driver agents, u(t) ∈ Rp denotes the aggre-
gated control vector that captures the inputs applied to the set
of driver agents, and y(t) ∈ Rp denotes the aggregated output
vector that captures the output measurements received from
the set of driver agents. Here, L(G) ∈ RN×N is the resulting
Laplacian matrix (see Section II). In addition, B ∈ RN×p

(resp., BT ∈ Rp×N ) is the input (resp., output) matrix of
the form B =

[
ei ej ek . . .

]
, where i, j, k, . . . are the

corresponding indices of driver agents in the system and
ei is the column vector with i-th element being equal to
one and other elements being equal to zero. Finally, for the
following results in this paper, it is considered that the pair



(−L(G), B) is stabilizable. Since L(G) is symmetric, the pair
(−L(G), BT) is detectable by duality.

We now present the proposed control algorithm, which
is applied to the actuators of the driver agents based on the
measurements collected from their sensors for the purpose of
influencing the overall behavior of the resulting system (see
Figure 1). Specifically, we propose the finite-time control
algorithm over user-defined prescribed time interval [0, T )
given by

u(t) =K1x̂(t) +K2z(t) +K3c(t), (6)
˙̂x(t) =αλ(t)

(
− L(G)x̂(t) +Bu(t) +H(y(t)−BTx̂(t)

)
,

x̂(0) = x̂0, (7)

ż(t) =αλ(t)
(
Acz(t) +Bc1x̂(t) +Bc2c(t)

)
,

z(0) = z0, (8)

where K1 ∈ Rp×N , K2 ∈ Rp×p, K3 ∈ Rp×p, H ∈
RN×p, Ac ∈ Rp×p, Bc1 ∈ Rp×N , and Bc2 ∈ Rp×p.
In the execution of the control signal given by (6) since
the aggregated state vector is not available, one needs to
reconstruct the aggregated state vector through the state
estimation algorithm given by (7) with x̂(t) ∈ RN denoting
the estimated state. In addition, to give a designer the
flexibility in achieving different sets of control objectives, (8)
denotes the dynamic compensator with z(t) ∈ Rp denoting
the dynamic compensator state and c(t) ∈ Rp denoting a
command of interest. Here, we consider that c(t) and ċ(t)
are bounded for t ≥ 0 and ċ(t) is a piecewise continuous
function. Note that the finite-time control algorithm given
by (6), (7), and (8) are inside the bottom “box” shown in
Figure 1. That is, based on the measurements y(t) collected
from the sensors of driver agents, an operator executes this
control algorithm through injecting u(t) to the actuators of
these agents. The aforementioned sets of control objectives
that can be achieved with this control algorithm over user-
defined prescribed time interval [0, T ) is discussed at the end
of this section.

We next discuss the stability of the controlled multiagent
network as a system based on time transformation and
highlight the separation principle. In particular, let the state
estimation error be x̃(t) , x(t) − x̂(t). This error evolves
according to the dynamics given by

˙̃x(t) = αλ(t)
(
− L(G)x(t) +Bu(t)

+L(G)x̂(t)−Bu(t)−H(y(t)−BTx̂(t))
)

= αλ(t)
(
− L(G)x̃(t)−HBTx̃(t)

)
= −αλ(t)

(
L(G) +HBT

)
x̃(t)

= −αλ(t)Fx̃(t), x̃(0) = x̃0, (9)

where F ,
(
L(G)+HBT

)
∈ RN×N . Here, we assume that

−F is Hurwitz by a proper selection of the observer gain
matrix H . We note that since (−L(G), BT) is detectable, one
can always find an observer gain matrix H such that −F is
Hurwitz. In addition, since L(G) is also symmetric, a proper
selection of H provides that all eigenvalues of F (resp.,
−F ) are positive (resp., negative). For example, one trivial

selection is H = B that results in F =
(
L(G) + HBT

)
=(

L(G)+BBT
)

with BBT being a diagonal matrix with ones
and zeros on its diagonal. From Lemma 2 in [24] or Lemma
3.3 in [25], it follows that this selection of the observer
gain matrix creates a positive-definite F matrix owing to
the connected, undirected graph topology.

Now, using the proposed control algorithm (6) in (4), one
can write

ẋ(t) =αλ(t)
(
− L(G)x(t) +B

(
K1x̂(t)

+K2z(t) +K3c(t)
))

=αλ(t)
(
− L(G)x(t) +B

(
K1(x(t)− x̃(t))

+K2z(t) +K3c(t)
))

=αλ(t)
(
− (L(G)−BK1)x(t)−BK1x̃(t)

+BK2z(t) +BK3c(t)
)
, x(0) = x0. (10)

In addition, the dynamic compensator given by (8) can be
rewritten as

ż(t) =αλ(t)
(
Acz(t) +Bc1x(t)−Bc1x̃(t) +Bc2c(t)

)
,

z(0) = z0. (11)

At this point, let r(t) ,
[
xT(t), zT(t), x̃T(t)

]T ∈ R2N+p.
From (9), (10), and (11), one can now write

ṙ(t) = αλ(t)

−(L(G)−BK1) BK2 −BK1

Bc1 Ac −Bc1

0N×N 0N×p −F


︸ ︷︷ ︸

M

r(t)

+αλ(t)

BK3

Bc2

0N×p


︸ ︷︷ ︸

N

c(t)

= αλ(t)
(
Mr(t) +Nc(t)

)
, r(0) = r0. (12)

Here, our finite-time control goal is limt→T−
(
r(t) +

M−1Nc(t)
)

= 0, where “−M−1Nc(t)” can cap-
ture different sets of control objectives. To achieve
this goal, one needs to make the system matrix M

in (12) Hurwitz. For this purpose, let M ,

[
M1 M2

M3 M4

]
,

where M1 ,

[
−(L(G)−BK1) BK2

Bc1 Ac

]
, M2 ,

[
−BK1

−Bc1

]
, M3 ,

0N×(N+p) and M4 , −F . Obviously, the spectrum of M
is equal to the union of the spectrums of M1 and M4

owing to the upper block triangular structure of M . This
shows the separation principle. Because, one can judiciously
select the controller gain matrices K1 and K2 to make M1

Hurwitz (see below) and select the observer gain matrix H to
make M4 Hurwitz (see the discussion below (9)). Hence, the
design processes for making M1 and M4 both Hurwitz are
independent. We now further elaborate how the controller
gain matrices K1 and K2 can be selected to render M1



Hurwitz. To this end, note that

M1 =

[
−(L(G)−BK1) BK2

Bc1 Ac

]
=

[
−L(G) 0N×p
Bc1 Ac

]
+

[
BK1 BK2

0p×N 0p×p

]
=

[
−L(G) 0N×p
Bc1 Ac

]
︸ ︷︷ ︸

Ã

+

[
B

0p×p

]
︸ ︷︷ ︸

B̃

[
K1 K2

]︸ ︷︷ ︸
K̃

= Ã+ B̃K̃. (13)

Hence, if ([
−L(G) 0N×p
Bc1 Ac

]
,

[
B

0p×p

])
, (14)

is stabilizable, then there always exist controller gain matri-
ces K1 and K2 such that M1 is Hurwitz. From Lemma 1.26
of [26], note also that when (−L(G), B) is stabilizable and

rank
[
−L(G)− λIN B

Bc1 0p×p

]
= N + p, (15)

for all λ ∈ σ(Ac) with σ(Ac) denoting the spectrum of Ac,
then the pair in (14) is stabilizable.

We are now ready to state the main result.

Theorem 1. Consider a multiagent network as a system
given by (4) and (5), where agents exchange information
using their local measurements according to a connected,
undirected graph G. In addition, if the driver agents execute
the proposed controller architecture given by (6), (7) and (8)
and M is Hurwitz, then

lim
t→T−

(
r(t) +M−1Nc(t)

)
= 0, (16)

and the solution to (12) is bounded for t ∈ [0, T ).

Due to page limitations, the proof of this result will be
reported elsewhere. For interested readers, it follows by first
defining q(t) , r(t) +M−1Nc(t). One can then write

q̇(t) = ṙ(t) +M−1Nċ(t)

= αλ(t)
(
M(q(t)−M−1Nc(t)) +Nc(t)

)
+M−1Nċ(t)

= αλ(t)Mq(t) +M−1Ncd(t), q(0) = q0, (17)

where cd(t) , ċ(t). One can now use the time transformation
method utilized in [2] and [3] (see also [Section 1.1.1.4, 27])
with the time transformation function θ(p) , T (1−e−p) , t
to transform the error dynamics given by (17) into

ψ′(p) = αMψ(p) + h(p)c∗d
(
θ(p)

)
, ψ(0) = q0, (18)

h′(p) = −h(p), h(0) = h0. (19)

where ψ(p) , ξ(t) is the solution to the dynamical system
given by (17) and

h(p) ,
dt

dp
=
dθ(p)

dp
= Te−p. (20)

By considering the Lyapunov function candidate V (ψ, h) =

ψTPψ + ηh2, where η ∈ R+ and P ∈ R(2N+p)×(2N+p)
+ is

the solution of the Lyapunov equation MTP + PM = −I,
the result then follows.

Theorem 1 also establishes the boundedness of the control
signal u(t) given by (6) over [0, T ). Note that one can
also view the term “αλ(t)(−L(G)x(t) + Bu(t))” in (4) as
the total control signal. Motivated from this standpoint, the
boundedness of this signal can be shown by proving that
s(t) , ṙ(t) is bounded over [0, T ). Similar to the discussion
given in the above paragraph, here one needs to form dynam-
ics of s(t), transform the resulting dynamics to the stretched
time interval, and then do the analysis on that interval to
conclude the boundedness of s(t), which is possible when
M and M , I + αM ∈ R2N+p are both Hurwitz. Once
ṙ(t) ,

[
ẋT(t), żT(t), ˙̃xT(t)

]T
is bounded and since the

total control signal (i.e., “αλ(t)(−L(G)x(t) + Bu(t))” in
(4)) equals to the first entry in ṙ(t), the boundedness of this
total control signal is now immediate. Once again, details
will be reported elsewhere due to page limitations.

Since r(t) approaches −M−1Nc(t) in the sense of (16)
at the user-defined convergence time T , we finally elabo-
rate the structure of “−M−1N” to show how it can be
constructed to capture different sets of control objectives.
Recall that we consider above the partitioned matrix given
by M =

[
M1 M2

M3 M4

]
. One can also partition the matrix N as

N =

[
N1

N2

]
with N1 =

[
BK3

Bc2

]
and N2 = 0N×p. Under the

conditions of Lemma 1, note that one can write

M−1 =

[
M−11 −M−11 M2M

−1
4

0N×(N+p) M−14

]
. (21)

As a result, we obtain

−M−1N=

[
−M−11 N1

0N×p

]
, (22)

where the last equality results from the fact that N2 =
0N×p. This implies that limt→T− x̃(t) = 0. Next, let
r̄(t) ,

[
x(t), z(t)

]T ∈ RN+p. From (22), limt→T−
(
r̄(t) +

M−11 N1c(t)
)
= 0 clearly holds. To further elaborate the

structure of the term “−M−11 N1”, let

M1,

[
M11 M12

M21 M22

]
=

[
−(L(G)−BK1) BK2

Bc1 Ac

]
, (23)

N1,

[
N11

N21

]
=

[
BK3

Bc2

]
, (24)

with M11,M12,M21,M22, N11, N21 being the correspond-
ing matrices. Since M1 can always be made Hurwitz (see dis-
cussion before Theorem 1), we define M−11 ,

[
M̄11 M̄12

M̄21 M̄22

]
.

As a result, “−M−11 N1” can be equivalently written as

−M−11 N1 = −
[
M̄11N11 + M̄12N21

M̄21N11 + M̄22N21

]
. (25)

Depending on the considered control objective, one can
design the structure of (25) accordingly.



To elucidate (25), consider, for example, N agents on an
undirected path graph with the first agent being the driver
agent. Assume that one would like all agents in the multi-
agent network to converge to a spatial location, c(t), at the
user-defined convergence time T (i.e., rendezvous). In this
case, we can set K1 = − 1

N 1T
N , K2 = 0, K3 = 1, Ac = −1,

Bc1 = 0, and Bc2 = 0, where we assume −(L(G)+ 1
NB1T

N )
is Hurwitz, then these selections result in −M−11 N1c(t) =
[1T

N , 0]Tc(t). Therefore, limt→T−
(
x(t) − 1Nc(t)

)
= 0 and

limt→T− z(t) = 0, where the former convergence yields
limt→T−

(
xi(t) − c(t)

)
= 0. For another example, we also

refer to the next section.

IV. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we show a numerical example to illustrate
the efficacy of the proposed control architecture presented
in Section III. Specifically, consider a multiagent network
with 4 agents (i.e., N = 4) subject to an undirected path
graph, where agents 2 and 3 are the driver agents (p = 2)
while agents 1 and 4 are the floating agents. This selection
of driver and floating agents gives

BT =

[
0 1 0 0
0 0 1 0

]
, (26)

for (4) and (5). The pair (−L(G), B) is controllable in this
case. In addition, we set α = 10 in (4) and all agents are
assigned to random initial conditions.

In the below numerical example, the objective is to design
a control algorithm to split the network such that agents 1
and 2 reach to a desired command (c1(t) = 3+3 sin(0.5t)+
sin(4t) is used) and agent 3 and 4 reach to another desired
command (c2(t) = −2 + 1.5 cos(0.8t) is used) at T = 5
seconds. It should be noted based on Theorem 1 and (25)
that

lim
t→T−

(
x(t) + (M̄11N11 + M̄12N21)c(t)

)
= 0. (27)

Therefore, with the given objective, we need to select gain
matrices such that

S , −(M̄11N11 + M̄12N21), (28)

with

ST =

[
1 1 0 0
0 0 1 1

]
. (29)

We first concisely explain the process of designing the
gain matrices K1,K2,K3, H,Ac, Bc1, Bc2 for the proposed
control architecture. Specifically, recall that F =

(
L(G) +

HBT
)
, where H needs to be designed such that F is a

matrix with positive real part eigenvalues. As discussed in
the paragraph below (9), a simple choice H = B makes
F a positive definite matrix. In order to use the dynamic
compensator (8) as an integrator in this case for allowing
agents 1 and 2 to reach to c1(t) and agents 3 and 4 to reach
to c2(t), we set Ac = 0 and

Bc1 =

[
0.5 0.5 0 0
0 0 0.5 0.5

]
, (30)

Bc2 =

[
−1 0
0 −1

]
. (31)

Note that the condition (15) is satisfied. Thus, by the discus-
sion before Theorem 1, we can always find K1,K2 such that
M1 is Hurwitz. Utilizing linear quadratic regulator design,
we obtain

K1 =

[
−1.1956 −1.0722 −0.3942 −0.1387
−0.1387 −0.3942 −1.0722 −1.1956

]
, (32)

K2 =

[
−1.4142 0

0 −1.4142

]
. (33)

In other words, M1 can now be constructed and M−11 can
be obtained. As mentioned earlier, based on (16) and (25),
we have limt→T−

(
x(t) + (M̄11N11 + M̄12N21)c(t)

)
=

limt→T−
(
x(t) − Sc(t)

)
= 0 where S is given by (29),

N11 = BK3, N21 = Bc2, and M̄11 and M̄12 are directly
obtained from M−11 . In this case, one can choose

K3 =

[
1.9692 −0.2462
−0.2462 2.0308

]
(34)

to finally satisfy (29). With α = 10 and the above gain
matrices, M and M , I +αM ∈ R2N+p are both Hurwitz.

Fig. 2. Response of the multiagent network as a system (the dashed lines
denote the trajectories of the commands c1(t) and c2(t), the solid lines
denote actual states x(t) of all agents, and the dotted lines denotes the state
estimation x̂(t)).

Fig. 3. The control signals of driver agents (i.e., agents 2 and 3 in the
considered multiagent network as a system).



Fig. 4. The total control signals uT (t) depicted by the right hand side of
(4) of all agents.

The response of the multiagent network as a system in this
example given by (4) and (5) under the proposed control
architecture given by (6), (7), and (8) is shown in Figure
2, where the dashed lines denote the trajectories of the
commands c1(t) and c2(t), the solid lines denote the actual
states x(t) of all agents, and the dotted lines denote the state
estimation x̂(t). As expected from the result (16) along with
the above selection of the gain matrices, this figure shows
that the states of agents 1 and 2 converge to c1(t) and the
states of agents 3 and 4 converge to c2(t) at T = 5 seconds.
Figures 3 and 4 also show the resulting control signals.

V. CONCLUSION

We focused on multiagent networks as systems and pro-
posed a new finite-time control algorithm using a recent time
transformation method. Specifically, based on a given user-
defined finite-time interval [0, T ), we showed that the pro-
posed algorithm guarantees the time-critical completion of a
given system-level control objective at T seconds regardless
of the initial conditions of agents. In addition, it was shown
that the separation principle holds for the proposed finite-
time control algorithm in the sense that one can select the
observer and controller gain matrices independently. Finally,
an illustrative numerical example demonstrated the efficacy
of our theoretical results.
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