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Abstract— In this paper, we address the problem of system-
theoretic dynamic information fusion in time-varying heteroge-
neous sensor networks. This class of sensor networks involves
nodes that receive observations from a process of interest (active
nodes) and nodes that do not receive any information (passive
nodes), where the active and passive node roles can be varying
with respect to time. At any given time, in addition, active nodes
are allowed to have nonidentical modalities such that they can
observe different measurements from the process. Specifically,
we propose a new distributed input and state “coestimation”
architecture for time-varying heterogeneous sensor networks,
where time evolution of input and state updates of each node
both depend on the local input and state information exchanges.
The stability and performance of the overall sensor network
are guaranteed once the local sufficient stability conditions for
each node are satisfied. As compared with our recent distributed
input and state “estimation” approach for the same problem,
where time evolution of input (respectively, state) update of
each node only depends on the local input (respectively, state)
information exchange, our illustrative numerical example also
demonstrates a substantially improved dynamic input and state
fusion performance.

I. INTRODUCTION

One of the fundamental problems in distributed algorithm
synthesis and analysis in sensor networks for dynamic infor-
mation fusion, which is of paramount importance to their
practical applications, is heterogeneity. Specifically, these
networks often involve nodes with heterogeneous informa-
tion roles; that is, active nodes and passive nodes. While
the authors of [1]–[7] present notable contributions to sensor
networks with (time-invariant and/or time-varying) active and
passive node roles, their results are applicable to practi-
cal scenarios only when each node obey scalar integrator
dynamics. In addition to heterogeneous information roles,
active nodes at any given time can also involve heterogeneous
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modalities such that they can observe different measurements
from the process. To this end, the authors of [8]–[10]
consider nonidentical modalities of sensor nodes in their
distributed algorithms. In particular, the result documented
in [8] ignores the possibility of having passive nodes in
the network since it requires all nodes to be active in the
sense of receiving observations from a process of interest.
Although the authors of [9] implicitly consider nodes that can
have time-invariant active and passive information roles, their
analysis involve global sufficient stability conditions, which
can be impractical for sensor networks having sufficiently
large set of nodes. Recently, our result documented in [10]
considers nodes that can have either time-invariant or time-
varying active and passive information roles with nodes
having nonidentical modalities under local sufficient stability
conditions for each node (see also [11] for a preliminary
version of this result). Yet, as it is highlighted in [Section
4.3, 10], tuning the resulting distributed algorithm for a
satisfactory performance can be a challenge in the presence
of time-varying set of active and passive nodes.

In this paper, we address the problem of system-theoretic
dynamic information fusion in time-varying heterogeneous
sensor networks — sensor networks with time-varying set of
active and passive information roles subject to nonidentical
modalities. Specifically, we propose a new distributed archi-
tecture entitled distributed input and state “coestimation”,
where time evolution of input and state updates of each
node both depend on the local input and state information
exchanges. The stability and performance of the overall
sensor network are guaranteed once the local sufficient
stability conditions for each node are satisfied. As compared
with our recent distributed input and state “estimation”
approach documented in [10] for the same problem, where
time evolution of input (respectively, state) update of each
node only depends on the local input (respectively, state)
information exchange, our illustrative numerical example
also demonstrates a substantially improved dynamic input
and state fusion performance. Finally, a preliminary version
of this paper appeared in [12], which only considers dis-
tributed algorithm synthesis and analysis for time-invariant
heterogeneous sensor networks.

The organization of this paper is as follows. In Section
II, we introduce necessary notations and definitions for the
main results of this paper. We then present synthesis and
analysis of the proposed distributed input and state coesti-
mation architecture in Section III, where the aforementioned
illustrative numerical example involving a comparison with
the approach documented in [10] is included in Section IV.
Finally, concluding remarks with regard to the results of this



paper are summarized in Section V.

II. NOTATION AND DEFINITIONS

Throughout this paper, we use a standard mathematical
notation. In particular, R denotes the set of real numbers,
Rn denotes the set of n × 1 real column vectors, Rn×m
denotes the set of n × m real matrices, 1n denotes the
n × 1 vector of all ones, and In denotes the n × n identity
matrix. Furthermore, we write (·)T for transpose, λmin(A)
and λmax(A) respectively for the minimum and maximum
eigenvalue of the Hermitian matrix A, λi(A) for the i-th
eigenvalue of A, where A is symmetric and the eigenvalues
are ordered from least to greatest value, diag(a) for the
diagonal matrix with the vector a on its diagonal, [x]i for
the entry of the vector x on the i-th row, and Aij for the
entry of the matrix A on the i-th row and j-th column.

We next recall some basic notions from graph theory
and refer to excellent textbooks [13] and [14] for details.
Specifically, an undirected graph G is defined by a set
VG = {1, . . . , N} of nodes and a set EG ⊂ VG × VG of
edges. If (i, j) ∈ EG , then the nodes i and j are neighbors
and the neighboring relation is indicated with i ∼ j. The
degree of a node is given by the number of its neighbors.
Letting di be the degree of node i, then the degree matrix of
a graph G, D(G) ∈ RN×N , is defined by D(G) , diag(d),
d = [d1, . . . , dN ]T. A path i0i1 . . . iL is a finite sequence of
nodes such that ik−1 ∼ ik, k = 1, . . . , L, and a graph G
is connected if there is a path between any pair of distinct
nodes. The adjacency matrix of a graph G, A(G) ∈ RN×N ,
is defined by [A(G)]ij = 1 if (i, j) ∈ EG and [A(G)]ij = 0

otherwise. The Laplacian matrix of a graph, L(G) ∈ SN×N+ ,
playing a central role in many graph-theoretic sensor network
treatments, is defined by L(G) , D(G) − A(G). The
spectrum of the Laplacian of an undirected and connected
graph can be ordered as 0 = λ1(L(G)) < λ2(L(G)) ≤
· · · ≤ λN (L(G)) with 1N as the eigenvector corresponding
to the zero eigenvalue λ1(L(G)) and L(G)1N = 0N and
eL(G)1N = 1N . In this paper, it is considered that the graph
G of a given sensor network is undirected and connected.

III. DISTRIBUTED INPUT AND STATE COESTIMATION

Consider a process of interest satisfying the dynamics of
the form given by

ẋ(t) = Ax(t) +Bw(t). x(0) = x0. (1)

In (1), x(t) ∈ Rn is an unmeasurable process state vector,
w(t) ∈ Rp is an unknown bounded input of the process
with a bounded time rate of change, A ∈ Rn×n is a
Hurwitz system matrix, and B ∈ Rn×p is the system
input matrix. Furthermore, consider a sensor network with
N nodes exchanging information among each other using
their local measurements according to an undirected and
connected graph G. As discussed, we call a node i to be
active if it receives an observation of the form given by

yi(t) = Cix(t), (2)

from the process (1), where yi(t) ∈ Rm and Ci ∈ Rm×n
respectively denote a process output and its system output

matrix. Likewise, we call a node i to be passive if it does not
receive any observation from the process (1). Notice from (2)
that each node can have nonidentical sensing modalities.

In this paper, we focus on the problem of distributively
observing the unmeasurable state x(t) and the unknown input
w(t) of the process given by (1) using a sensor network
having time-varying active and passive node roles through
dynamic information fusion. Specifically, if a node in the
heterogeneous sensor network is active for some time instant,
then it is subject to the observations of the process given by
(2) on that time instant, otherwise it is a passive node and has
no observation. Similar to the case in Figure 2d of [15] and
without loss of much practical generality, we assume that a
node can smoothly change back and forth between active and
passive information roles, where the smooth function gi(t) ∈
[0, 1] captures such role changes. While each node can have
nonidentical sensing modalities as mentioned above, we also
assume for the well-posedness of the considered problem
here that each active node has complementary properties
distributed over the sensor network to guarantee collective
observability, even though the pairs (A,Ci), i = 1, . . . , N ,
may not be locally observable. Mathematically speaking,
collective observability is defined as the pair (A,C) is
observable, where C = [CT

1 , C
T
2 , . . . , C

T
N ]T (see, for ex-

ample, [8]–[10]). Hence, a sensor network design is a-priori
required to guarantee collective observability at any time in
the presence of time-varying active and passive information
roles of nodes.

For each node i, i = 1, . . . , N , we now propose the
distributed input and state coestimation algorithm given by

˙̂xi(t) =Ax̂i(t) +Bŵi(t) + gi(t)Li
(
yi(t)− Cix̂i(t)

)
−αMi

N∑
j=1

aij
(
x̂i(t)− x̂j(t)

)
+αSi

N∑
j=1

aij
(
ŵi(t)− ŵj(t)

)
, x̂i(0) = x̂i0, (3)

˙̂wi(t) = gi(t)Ji
(
yi(t)− Cix̂i(t)

)
− σiKiŵi(t)

+αTi

N∑
j=1

aij
(
x̂i(t)− x̂j(t)

)
−αNi

N∑
j=1

aij
(
ŵi(t)− ŵj(t)

)
, ŵi(0) = ŵi0, (4)

where x̂i(t) ∈ Rn is the local estimate of x(t) for node
i, ŵi(t) ∈ Rp is the local input estimate of w(t) for node
i, Li ∈ Rn×p, Ji ∈ Rp×m and Ki ∈ Rp×p are design
gain matrices, Mi ∈ Rn×n, Si ∈ Rn×p, Ti ∈ Rp×n, and
Ni ∈ Rp×p are additional design gain matrices, and α ∈ R+

and σi ∈ R+ are design coefficients. As discussed above,
here gi(t) ∈ [0, 1] represents a smooth function for each
node i, i = 1, . . . , N , which determines whether a node is
active or passive at a given time.

Since the time evolution of input and state updates given
by (3) and (4) both depend on the local input and state
information exchanges (i.e., the coupling terms “x̂i(t) −
x̂j(t)” and “ŵi(t)− ŵj(t)” that appear both in these updates



through a given graph), we use the word “coestimation”
when referring to the proposed distributed algorithm. As
compared with our recent distributed input and state “es-
timation” approach documented in [10], this is the main
difference of the proposed distributed coestimation algorithm
given by (3) and (4), where the time evolution of input
(respectively, state) update of each node only depends the
local input (respectively, state) information exchange with
the distributed algorithm presented in [10].

We now discuss the stability and performance aspects of
the proposed distributed coestimation algorithm presented
above. For this purpose, we first define the state and input
estimation error vectors respectively as

x̃i(t) , x(t)− x̂i(t), (5)
w̃i(t) , ŵi(t)− w(t). (6)

Specifically, by taking the derivative of (5) with respect to
time, one can write

˙̃xi(t) = Ax(t) +Bw(t)−Ax̂i(t)−Bŵi(t)
−gi(t)Li

(
yi(t)− Cix̂i(t)

)
+αMi

N∑
j=1

aij
(
x̂i(t)− x̂j(t)

)
−αSi

N∑
j=1

aij
(
ŵi(t)− ŵj(t)

)
= (A− gi(t)LiCi)x̃i(t)−Bw̃i(t)

−αMi

N∑
j=1

Lij x̃j(t)− αSi
N∑
j=1

Lijw̃j(t). (7)

where Lij is the entry of the Laplacian matrix on the i-th
row and j-th column. Furthermore, by taking the derivative
of (6) with respect to time, one can also write

˙̃w(t) = gi(t)JiCi
(
xi(t)− x̂i(t)

)
− σiKi

(
w̃i(t) + w(t)

)
+αTi

N∑
j=1

aij
(
x(t)− x̃i(t)− x(t) + x̃j(t)

)
−αNi

N∑
j=1

aij
(
w̃i(t) + w(t)− w̃j(t)− w(t)

)
− ẇ(t)

= gi(t)JiCix̃i(t)− σiKiw̃i(t)− αTi
N∑
j=1

Lij x̃j(t)

−αNi
N∑
j=1

Lijw̃j(t)− σiKiw(t)− ẇ(t). (8)

Next, let zi(t) , [x̃T
i (t), w̃T

i (t)]T ∈ Rn+p be the aggre-
gated error vector; therefore, we can now write (7) and (8)
in the compact form

żi(t) =

[
A− gi(t)LiCi −B
gi(t)JiCi −σiKi

]
︸ ︷︷ ︸

Āi(t)

zi(t)

−α
N∑
j=1

Lij
[
Mi Si
Ti Ni

]
︸ ︷︷ ︸

Hi

zj(t)+

[
0

−σiKiw(t)− ẇ(t)

]
︸ ︷︷ ︸

φi(t)

= Āi(t)zi(t)− α
N∑
j=1

LijHizj(t) + φi(t). (9)

Here, the matrix Āi(t) can be rewritten as

Āi(t) = Āi
(
gi(t)

)
=

[
A −B
0 −σiKi

]
︸ ︷︷ ︸

Āi,0

+gi(t)

[
−LiCi 0
JiCi 0

]
︸ ︷︷ ︸

Ãi

,

= Āi,0 + gi(t)Ãi, (10)

where gi(t) ∈ [0, 1]. Note that Āi,0 and Āi,1 are the
matrices corresponding to Āi(t) at gi(t) = 0 and gi(t) = 1,
respectively. Hence, Ãi = Āi,1 − Āi,0. The following result
is now needed:

If there exists a common positive-definite matrix Pi for
node i, i = 1, . . . , N , satisfying

ĀT
i,0Pi + PiĀi,0 ≤ −εIn+p, (11)

ĀT
i,1Pi + PiĀi,1 ≤ −εIn+p, (12)

then the inequality given by

Āi
(
gi(t)

)T
Pi + PiĀi

(
gi(t)

)
≤ −εIn+p, (13)

holds for all gi(t) ∈ [0, 1], where ε ∈ R+. Due to page limi-
tations, the proof is omitted and will be reported elsewhere.

Next, let z(t) , [zT
1 (t), zT

2 (t), . . . , zT
N (t)]T ∈ R(n+p)N .

As a consequence, (9) can be written in the form given by

ż(t) =

Ā1(t) 0
. . .

0 ĀN (t)

z(t)
−α

 L11H1 L12H1 . . . L1NH1

...
...

. . .
...

LN1HN LN2HN . . . LNNHN

z(t) +

φ1(t)
...

φN (t)


=

Ā1(t) 0
. . .

0 ĀN (t)


︸ ︷︷ ︸

Ā(t)

z(t)− α

H1 0
. . .

0 HN


︸ ︷︷ ︸

H

·

L11In+p L12In+p . . . L1N In+p

...
...

. . .
...

LN1In+p LN2In+p . . . LNN In+p

z(t) + φ(t)

= Ā(t)z(t)− αH(L(G)⊗ In+p)z(t) + φ(t), (14)

where L(G) is the Laplacian matrix. In what follows, for
each node i, i = 1, . . . , N , we:

i) Solve the linear matrix inequalities given by (11) and
(12) for a common positive-definite matrix Pi.

ii) Obtain the design coefficient matrices Mi, Si, Ti, and
Ni from the matrix equality given by

Hi =

[
Mi Si
Ti Ni

]
= P−1

i . (15)

Notice from (15) that H = P−1 (i.e., PH = IN ⊗ In+p =
IN(n+p)), where P , diag([P1, P2, . . . , PN ]). We are now



ready to state the main result of this paper. Consider the
process given by (1) and the distributed input and state
coestimation architecture given by (3) and (4). If there
exists a common positive-definite matrix Pi for each node i,
i = 1, . . . , N , satisfying (11) and (12), and one selects Hi

according to (15), then the sensor network error dynamics
given by (14) subject to an undirected and connected graph
G is uniformly bounded. Once again, the proof is omitted
due to page limitations and will be reported elsewhere. For
interested readers, it follows from the Lyapunov function
V (z) = zTPz as well as the results highlighted in (11),
(12) and (13). One can also show that the upper bound on
‖z(t)‖2 for t ≥ T is proportional to µ , 2‖P‖2φ̄

λmin(Q̄)
, where

||φi(t)||2 ≤ φ̄i. Since µ depends on the design parameters
of the proposed distributed input and state coestimation
architecture, it can be used as design metric such that the
design parameters can be judiciously selected to make the
upper bound on ‖z(t)‖2 small.

Finally, we concisely compare the proposed algorithm
of this paper with our recent distributed input and state
estimation approach with time-varying active and passive
information roles of nodes [10], which has the form

˙̂xi(t) = (A− γP−1
i )x̂i(t) +Bŵi(t)

+gi(t)Li
(
yi(t)− Cix̂i(t)

)
−αP−1

i

∑
i∼j

(x̂i(t)− x̂j(t)), x̂i(0) = x̂i0, (16)

˙̂wi(t) = gi(t)Ji(yi(t)− Cix̂i(t))− (σiKi + γIp)ŵi(t)

−α
∑
i∼j

(ŵi(t)− ŵj(t)), ŵi(0) = ŵi0, (17)

with Pi being the positive-definite matrix satisfying

Ri1 ,
[
ATPi + PiA −PiB
−BTPi −2σiKi

]
≤ 0, (18)

Ri2 ,
[
(A− LiCi)TPi + Pi(A− LiCi) −PiB + CT

i J
T
i

−BTPi + JiCi −2σiKi

]
≤ 0.

(19)

In particular, this approach has leakage terms in both input
and state updates (16) and (17) in the form of “−γP−1

i x̂i(t)”
and “−(σiKi+γIp)ŵi(t)”. If the gains “γP−1

i ” and “σiKi+
γIp” in these terms are not small, then they can result in
poor performance as well-known. In contrast, the proposed
distributed coestimation architecture of this paper for het-
erogeneous sensor networks with time-varying active and
passive information roles of nodes has only one leakage
term “−σiKiŵi(t)” in the input update (4). Moreover, the
proposed architecture of this paper adds the coupling terms
“x̂i(t) − x̂j(t)” and “ŵi(t) − ŵj(t)” that appear both input
and state updates. Finally, the linear matrix inequalities here
given by (11) and (12) have a simple structure as compared
with the ones in (18) and (19). Owing to these reasons, the
proposed coestimation architecture of this paper can be easily
(i.e., better) tuned for an overall desired sensor network input
and state information fusion performance as opposed to the
approach in [10].

IV. ILLUSTRATIVE NUMERICAL EXAMPLE

To illustrate the proposed distributed input and state coes-
timation architecture presented and analyzed in Section III,
consider the benchmark process [10]–[12] composed of two
decoupled systems with the dynamics given by (1), where

A =


0 1 0 0
−ω2

n1 −2ωn1ξ1 0 0
0 0 0 1
0 0 −ω2

n2 −2ωn2ξ2

 , (20)

B =


0 0
ω2

n1 0
0 0
0 ω2

n2

 , (21)

with ωn1 = 1.2, ξ1 = 0.9, ωn2 = 1.3, and ξ2 = 0.5. This
process can represent a linearized simple vehicle model with
the first and third states corresponding to the positions in
the x and y directions, respectively, while the second and
fourth states corresponding to the velocities in the x and
y directions, respectively. The initial conditions are set to
x0 = [−2.5, 0.5, 2.5, 0.25]T. In addition, we consider the
input given by

w(t) =

[
2.5 sin(0.3t) + 1.5

1.5 cos(0.5t)

]
. (22)

For the numerical results presented in this section, we
consider a sensor network with 12 nodes exchanging infor-
mation over an undirected and connected graph topology as
shown in Figure 1, where the active and passive roles of
each node are varying with respect to time. We also consider
each sensor sensing range to be a circle with the radius
r = 2.5. If the vehicle’s position (the combination of the
first and third states) is within a sensor sensing range, then
that sensor becomes (smoothly) active. Furthermore, if the
vehicle’s position is out of the sensor sensing range, then
it becomes (smoothly) passive. Note that, for the transition
of gi(t), we use the function gi(t) = e−βt when node i is
switching from 1 to 0, and gi(t) = 1 − e−βt when node i
is switching from 0 to 1, where β is a positive constant. We
adopt this transition from Figure 2(d) of [15].

x

y

1 4 7 10

2 5 8 11

3 6 9 12

(−2, 2) (0, 2) (2, 2) (4, 2)

(−2, 0) (0, 0) (2, 0) (4, 0)

(−2,−2) (0,−2) (2,−2) (4,−2)

Fig. 1. Communication graph of the time-varying heterogeneous sensor
network with 12 nodes (lines denote communication links and circles denote
nodes).



Each node’s sensing capability is represented by (2) with
the output matrices

Ci =

[
1 0 0 0
0 0 1 0

]
, (23)

and σi = 0.01 for the odd index nodes and

Ci =

[
0 1 0 0
0 0 0 1

]
, (24)

and σi = 0.001 for the even index nodes. The pair (A,Ci)
is observable for all i = 1, . . . , 12 in this example; hence,
collective observability assumption is satisfied. Moreover, all
nodes are subject to zero initial conditions and we set Ji =
diag([20; 20]) and Ki = diag([10; 10]) for i = 1, . . . , N .
For observer gain Li, the odd index nodes are subject to

Li =


20.13 0.00
1.33 0.00
0.00 20.32
0.00 3.19

 , (25)

while the even index nodes are subject to

Li =


−40.17 4.14
57.54 −5.88
4.53 −40.20
−6.45 60.42

 . (26)

For all nodes, we set α = 25. In addition, we obtain the
common Pi by solving the linear matrix inequalities (11)
and (12) with ε = 0.000001 for the odd nodes that results in

P1 =


0.937 0.211 0.000 0.000 0.907 0.000
0.211 0.333 0.000 0.000 0.191 0.000
0.000 0.000 0.928 0.184 0.000 0.905
0.000 0.000 0.184 0.361 0.000 0.184
0.907 0.191 0.000 0.000 0.986 0.000
0.000 0.000 0.905 0.184 0.000 1.010

, (27)

and ε = 0.0001 for the even nodes that results in

P2 =


1.907 1.744 −0.034 0.011 1.895 −0.035
1.744 2.118 −0.031 0.044 1.773 −0.033
−0.034 −0.031 0.862 0.649 −0.036 0.856
0.011 0.044 0.649 1.106 0.009 0.680
1.895 1.773 −0.036 0.009 2.018 −0.052
−0.035 −0.033 0.856 0.680 −0.052 0.980

.
(28)

That is, P1 = P3 = P5 = P7 = P9 = P11 and P2 =
P4 = P6 = P8 = P10 = P12. Based on the matrix Pi,
i = 1, 2, . . . , 12, we obtain Hi from (15) and the matrices
Mi, Si, Ti, and Ni are selected accordingly.

For the proposed distributed input and state “coestimation”
architecture (3) and (4), sensor network nodes are able to
closely estimate the process states and inputs as shown
in Figures 2 and 3, respectively. In particular, Figure 4
illustrates that the sensor network is able to estimate the
trajectory of the vehicle (the first and third states of the
process). For comparison purposes, in addition, we include
here the numerical results (see Figures 5, 6 and 7) utilizing
the recent architecture in [10] (i.e, utilizing the distributed
input and state “estimation” law given by (16) and (17))

Fig. 2. Time evolution of x̂i(t), i = 1, . . . , N, of the considered
time-varying heterogeneous sensor network under the proposed distributed
“coestimation” architecture given by (3) and (4) (the dash lines denote the
inputs of the actual process and the solid lines denote the input estimates
of nodes).

Fig. 3. Time evolution of ŵi(t), i = 1, . . . , N, of the considered
time-varying heterogeneous sensor network under the proposed distributed
“coestimation” architecture given by (3) and (4) (the dash lines denote the
inputs of the actual process and the solid lines denote the input estimates
of nodes).

Fig. 4. Position estimates (first and third states of the process) of the
considered time-varying heterogeneous sensor network under the proposed
distributed “coestimation” architecture given by (3) and (4) (the dash line
denotes the trajectory of the actual process (i.e. the combination of the first
and third state) and the solid lines denote the state estimates of nodes).
Here, AN stands for the the active nodes.

for the same scenario outlined above in terms of the dy-
namics of the process, communication graph of nodes, and



Fig. 5. Time evolution of x̂i(t), i = 1, . . . , N, of the considered
time-varying heterogeneous sensor network under the recent distributed
“estimation” architecture in [10] given by (16) and (17) (the dash lines
denote the inputs of the actual process and the solid lines denote the input
estimates of nodes).

Fig. 6. Time evolution of ŵi(t), i = 1, . . . , N, of the considered
time-varying heterogeneous sensor network under the recent distributed
“estimation” architecture in [10] given by (16) and (17) (the dash lines
denote the inputs of the actual process and the solid lines denote the input
estimates of nodes).

sensors’ modalities. To summarize, this comparison study
clearly highlights the substantially improved dynamic input
and state fusion performance of the proposed distributed
“coestimation” architecture of this paper versus our recent
distributed “estimation” approach in [10].

V. CONCLUSION

In order to contribute to the previous studies in distributed
algorithm synthesis and analysis for sensor networks, we ad-
dressed the problem of system-theoretic dynamic information
fusion in time-varying heterogeneous sensor networks, which
involve time-varying set of active and passive information
roles subject to nonidentical modalities. To this end, a new
distributed input and state “coestimation” architecture was
proposed, where the key feature of our framework was that
time evolution of input and state updates of each node both
depend on the local input and state information exchanges.
As compared with our recent distributed input and state “esti-
mation” approach documented in [10] for the same problem,
where time evolution of input (respectively, state) update of
each node only depends the local input (respectively, state)
information exchange, our illustrative numerical example

Fig. 7. Position estimates (first and third states of the process) of the
considered time-varying heterogeneous sensor network under the reent
distributed “estimation” architecture in [10] given by (16) and (17) (the
dash line denotes the trajectory of the actual process (i.e. the combination
of the first and third state) and the solid lines denote the state estimates of
nodes). Here, AN stands for the the active nodes.

also demonstrated a substantially improved dynamic input
and state fusion performance.
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