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ABSTRACT
An important research area in sensor networks is the design

and analysis of distributed estimation algorithms for dynamic in-
formation fusion in the presence of heterogeneity resulting from
(i) nonidentical information roles of nodes and (ii) nonidentical
modalities of nodes. In particular, (i) implies that both active
(i.e., subject to observations of a process of interest) and pas-
sive (i.e., subject to no observations) nodes can be present in
the sensor network. Furthermore, (ii) implies that active nodes
can observe different measurements from a process (e.g., a subset
of active nodes can observe position measurements and the rest
can observe velocity measurements for a target tracking prob-
lem). In this paper, we focus on heterogeneous sensor networks,
sensor networks with (i) and (ii), and present a new distributed
input and state estimation approach. In addition to the presented
theoretical contribution including the stability and performance
of the proposed estimation approach, an illustrative numerical
example is also given to demonstrate its efficacy.

1 INTRODUCTION
Advances in integrated microsystems open up a broad spec-

trum of sensor network applications. To this end, an important
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research area in sensor networks is the design and analysis of dis-
tributed estimation algorithms for dynamic information fusion in
the presence of heterogeneity resulting from (i) nonidentical in-
formation roles of nodes (e.g., see [1–4]) and (ii) nonidentical
modalities of nodes (e.g., see [5, 6]). In particular, (i) implies
that both active (i.e., subject to observations of a process of in-
terest) and passive (i.e., subject to no observations) nodes can
be present in the sensor network. Furthermore, (ii) implies that
active nodes can observe different measurements from a process
(e.g., a subset of active nodes can observe position measurements
and the rest of active nodes can observe velocity measurements
for a target tracking problem).

To address distributed input and state estimation in hetero-
geneous sensor networks, sensor networks with (i) and (ii), the
authors recently proposed an algorithm in [7] (also in [8] that ex-
pands the results of [7]). The key feature of their algorithm was
that it utilizes local information not only during the execution of
the distributed input and state estimation law but also in its de-
sign (i.e., global stability is guaranteed once each node satisfies
given local stability conditions). Yet, it was observed that due
to a theoretical conservatism resulting from their approach, the
selection of the design parameters of their algorithm may not be
always trivial to achieve an acceptable estimation performance
(e.g., see Figure 3 in [7]). To address this drawback in this paper,
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we present a new distributed input and state estimation approach.
Specifically, by theoretically restructuring the distributed state
and input estimation law presented in [7] using a Lyapunov for-
malism and adding cross coupling terms, it is shown that the new
approach of this paper achieves a desired state and input estima-
tion performance with design parameters being easy to tune. Fur-
thermore, the proposed approach still has all the benefits of our
former work in [7] (e.g., utilizing local information both during
the execution of this approach and in its design). In addition to
the presented theoretical contribution including the stability and
performance of the proposed estimation approach, an illustrative
numerical example is also given to demonstrate its efficacy.

The organization of this paper is as follows. Section 2 intro-
duces mathematical preliminaries for the main results of this pa-
per. In Section 3, we present design and analysis of the new dis-
tributed input and state estimation architecture, where the afore-
mentioned illustrative numerical example is included in Section
4. Finally, concluding remarks are summarized in Section 5.

2 MATHEMATICAL PRELIMINARIES
We use a standard notation. Specifically, R denotes the set

of real numbers, Rn denotes the set of n×1 real column vectors,
Rn×m denotes the set of n×m real matrices, 1n denotes the n×1
vector of all ones, and In denotes the n× n identity matrix. In
addition, we write (·)T for transpose, λmin(A) and λmax(A) for
the minimum and maximum eigenvalue of the Hermitian matrix
A, respectively, λi(A) for the i-th eigenvalue of A, where A is
symmetric and the eigenvalues are ordered from least to greatest
value, diag(a) for the diagonal matrix with the vector a on its
diagonal, [x]i for the entry of the vector x on the i-th row, and Ai j
for the entry of the matrix A on the i-th row and j-th column.

Next, we recall some basic notions from graph theory and
refer to textbooks [9] and [10] for details. Specifically, an undi-
rected graph G is defined by a set VG = {1, . . . ,N} of nodes
and a set EG ⊂ VG × VG of edges. If (i, j) ∈ EG , then the
nodes i and j are neighbors and the neighboring relation is in-
dicated with i ∼ j. The degree of a node is given by the num-
ber of its neighbors. Letting di be the degree of node i, then
the degree matrix of a graph G, D(G) ∈ RN×N , is given by
D(G) , diag(d), d = [d1, . . . ,dN ]

T. A path i0i1 . . . iL is a fi-
nite sequence of nodes such that ik−1 ∼ ik, k = 1, . . . ,L, and a
graph G is connected if there is a path between any pair of dis-
tinct nodes. The adjacency matrix of a graph G, A(G) ∈ RN×N ,
is given by [A(G)]i j = 1 if (i, j) ∈ EG and [A(G)]i j = 0 other-
wise. The Laplacian matrix of a graph, L(G) ∈ SN×N

+ , playing
a central role in many graph-theoretic treatments of sensor net-
works, is given by L(G) , D(G)−A(G). The spectrum of the
Laplacian of an undirected and connected graph can be ordered
as 0 = λ1(L(G)) < λ2(L(G)) ≤ ·· · ≤ λN(L(G)) with 1N as the
eigenvector corresponding to the zero eigenvalue λ1(L(G)) and

L(G)1N = 0N and eL(G)1N = 1N . Here, we assume that the graph
G of a given sensor network is undirected and connected.

3 PROPOSED APPROACH

While we propose a new distributed input and state estima-
tion approach for heterogeneous sensor networks in this paper,
we follow the same problem setup outlined in [7]. Specifically,
we consider a process with the dynamics given by

ẋ(t) = Ax(t)+Bw(t), x(0) = x0, (1)

where x(t) ∈ Rn denotes the process internal state vector, w(t) ∈
Rp denotes an unknown bounded input of the process with a
bounded time rate of change, A ∈Rn×n denotes the Hurwitz sys-
tem matrix, and B ∈ Rn×p is the system input matrix.

We next consider a sensor network with N nodes exchanging
information among each other using their local measurements
according to an undirected and connected graph G. Using the
terminology of [1–4], a node i, i= 1, . . . ,N, is said to be an active
node if it is subject to the observation of the process (1) given by

yi =Cix(t), (2)

where yi ∈Rp and Ci ∈Rp×n denote the measurable process out-
put and the system output matrix for node i, i = 1, . . . ,N, respec-
tively. Furthermore, a node i, i = 1, . . . ,N, is said to be a passive
node when it has no observation of the process (1).

Here, we are interested in the problem of distributively esti-
mating the unmeasurable state x(t) and the unknown input w(t)
of the process given by (1) using a sensor network, where active
nodes are subject to the observation given by (2). Note that the
assumption of A being Hurwitz results from the fact that there are
passive nodes in the sensor network; thus, it does not result from
the distributed estimation approach proposed in the next section.

We now propose a new input and state estimation law given
by

˙̂xi(t) = Ax̂i(t)+Bŵi(t)+giLi
(
yi(t)−Cix̂i(t)

)
−αMi

N

∑
j=1

ai j
(
x̂i(t)− x̂ j(t)

)
+αSi

N

∑
j=1

ai j
(
ŵi(t)− ŵ j(t)

)
,

x̂i(0) = x̂i0, (3)
˙̂wi(t) = giKi

(
yi(t)−Cix̂i(t)

)
−σiKiŵi(t)

+αTi

N

∑
j=1

ai j
(
x̂i(t)− x̂ j(t)

)
−αNi

N

∑
j=1

ai j
(
ŵi(t)− ŵ j(t)

)
,

ŵi(0) = ŵi0, (4)
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for node i, i = 1, . . . ,N. In (3) and (4), x̂(t) ∈ Rn denotes the
local estimate of x(t) for node i and ŵ(t) ∈ Rp denotes the local
input estimate of w(t) for node i. Furthermore, Li ∈ Rn×p and
Ki ∈Rp×p are design gain matrices and α and σi ∈R are positive
design coefficients. Finally, Mi ∈ Rn×n, Si ∈ Rn×p, Ti ∈ Rp×n,
and Ni ∈ Rp×p are design coefficient matrices. Note that gi = 1
if node i is active and gi = 0 if node i is passive.

Note that we now compare the new distributed input and
state estimation law given by (3) and (4) with its counterpart in
[7]. For this purpose, the distributed input and state estimation
law of [7] has the form

˙̂xi(t) = (A− γP−1
i )x̂i(t)+Bŵi(t)+giLi

(
yi(t)

−Cix̂i(t)
)
−αP−1

i ∑
i∼ j

(x̂i(t)− x̂ j(t)), x̂i(0) = x̂i0, (5)

˙̂wi(t) = giKi(yi(t)−Cix̂i(t))− (σiKi + γIp)ŵi(t)

−α ∑
i∼ j

(ŵi(t)− ŵ j(t)), ŵi(0) = ŵi0, (6)

where Pi > 0 is a gain satisfying the linear matrix inequality

Ri =

[
ĀT

i Pi +PiĀi −PiB+giCT
i KT

i
−BTPi +giKiCi −2σiKi

]
≤ 0, (7)

with Āi , A− giLiCi. As noted in [7], the terms “−γP−1
i x̂i(t)”

and “−(σiKi + γIp)ŵi(t)” appearing respectively in (5) and (6)
are often referred as leakage terms. To this end, if the gains
“γP−1

i ” and “σiKi + γIp” multiplying these terms are not small,
then they can result in poor performance as well-known. Yet,
since “σiKi” also appears in the linear matrix inequality given by
(7), this term may not always be selected as small while satisfy-
ing (7) either due to the magnitude of the term “−PiB+giCT

i Ki”
being not small or a computational conservatism. Thus, (5) and
(6) of [7] may not always yield to an acceptable performance.

In contrast to (5) and (6) of [7] discussed in above, the new
input and state estimation law given by (3) and (4) only has one
leakage term “−σiKiŵi(t)” that appears on the latter equation.
Furthermore, as discussed at the end of this section (also see
Section 4), the gain “σiKi” of this term can be made sufficiently
small here, and hence, the proposed approach of this paper has
the capability to achieve better estimation performance as com-
pared with our recent results documented in [7].

Next, let

x̃i(t) , x(t)− x̂i(t) ∈ Rn, (8)

w̃i(t) , ŵi(t)−w(t) ∈ Rp. (9)

Taking the time derivative of (8), one can write

˙̃xi(t) = ẋ(t)− ˙̂xi(t)

= Ax(t)+Bw(t)−Ax̂i(t)−Bŵi(t)−giLi
(
yi(t)−Cix̂i(t)

)
+αMi

N

∑
j=1

ai j
(
x̂i(t)− x̂ j(t)

)
−αSi

N

∑
j=1

ai j
(
ŵi(t)− ŵ j(t)

)
= Ax̃i(t)−Bw̃i(t)−giLiCix̃i(t)

−αMi

N

∑
j=1

ai j
(
x̃i(t)− x̃ j(t)

)
−αSi

N

∑
j=1

ai j
(
w̃i(t)− w̃ j(t)

)
= (A−giLiCi)x̃i(t)−Bw̃i(t)−αMi

N

∑
j=1

ai j
(
x̃i(t)− x̃ j(t)

)
−αSi

N

∑
j=1

ai j
(
w̃i(t)− w̃ j(t)

)
= (A−giLiCi)x̃i(t)−Bw̃i(t)

−αMi

N

∑
j=1
Li j x̃ j(t)−αSi

N

∑
j=1
Li jw̃ j(t). (10)

where Li j is the entry of the Laplacian matrix on the i-th row
and j-th column. Furthermore, the time derivative of (9) can be
written as

˙̃wi(t) = giKiCi
(
x(t)− x̂i(t)

)
−σiKi

(
w̃i(t)

+w(t)
)
+αTi

N

∑
j=1

ai j
(
x(t)− x̃i(t)− x(t)+ x̃ j(t)

)
−αNi

N

∑
j=1

ai j
(
w̃i(t)+w(t)− w̃ j(t)−w(t)

)
− ẇ(t)

= giKiCix̃i(t)−σiKi
(
w̃i(t)+w(t)

)
− ẇ(t)

−αTi

N

∑
j=1

ai j
(
x̃i(t)− x̃ j(t)

)
−αNi

N

∑
j=1

ai j
(
w̃i(t)− w̃ j(t)

)
= giKiCix̃i(t)−σiKiw̃i(t)

−αTi

N

∑
j=1
Li j x̃ j(t)−αNi

N

∑
j=1
Li jw̃ j(t)−σiKiw(t)− ẇ(t).

(11)

Furthermore, let zi = [x̃T
i (t), w̃

T
i (t)]

T ∈ Rn+p. Now, (10) and
(11) can be written in a compact form as

żi(t) =
[

A−giLiCi −B
giKiCi −σiKi

]
zi(t)−α

N

∑
j=1
Li j

[
Mi Si
Ti Ni

]
z j(t)

+

[
0

−σiKiw(t)− ẇ(t)

]
, (12)
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or equivalently,

żi(t) = Āizi(t)−α

N

∑
j=1
Li jHiz j(t)+φi(t), (13)

where Āi =

[
A−giLiCi −B

giKiCi −σiKi

]
∈R(n+p)×(n+p), Hi =

[
Mi Si
Ti Ni

]
∈

R(n+p)×(n+p) and φi(t) =
[

0
−σiKiw(t)− ẇ(t)

]
∈ Rn+p. It is of

practical importance to note here that one can always choose the
design terms Li, Ki, and σi such that Āi is Hurwitz, and hence, Āi
being Hurwitz is assumed for the following results. Here, note
also that there exists a unique positive-definite matrix Pi such that

ĀT
i Pi +PiĀi +Qi = 0, (14)

holds for a given positive-definite matrix Qi.
Now, let the aggregated vector be given by z(t) ,

[zT
1 (t),z

T
2 (t), . . . ,z

T
N(t)]

T ∈R(n+p)N . To this end, (13) can be writ-
ten in a compact form as

ż(t) =

Ā1 0
. . .

0 ĀN

z(t)

−α

L11H1 L12H1 . . . L1NH1
...

...
. . .

...
LN1HN LN2HN . . . LNNHN

z(t)+

φ1(t)
...

φN(t)


=

Ā1 0
. . .

0 ĀN

z(t)−α

H1 0
. . .

0 HN


·

L11In+p L12In+p . . . L1NIn+p
...

...
. . .

...
LN1In+p LN2In+p . . . LNNIn+p

z(t)+φ(t)

= Āz(t)−αH(L(G)⊗ In+p)z(t)+φ(t). (15)

where L(G) is the Laplacian matrix. Considering the process
given by (1) and the distributed input and state estimation archi-
tecture given by (3) and (4); it can be shown that if the matrix Hi
is selected as Hi = P−1

i and nodes exchange information using
local measurement subject to an undirected and connected graph
G, then the error dynamics given by (15) is uniformly bounded.
The proof of this result will be reported elsewhere, but for in-
terested readers, it follows by utilizing the Lyapunov function
candidate given by V

(
z(t)
)
= zT(t)Pz(t). Note that one can also

show ‖z(t)‖2
2 ≤

√
λmax(P))µ2

λmin(P))
for t ≥ T, where µ , 2‖P‖2φ̄

λmin(Q̄)
with

‖φ‖2 ≤ φ̄ and Q̄ = Q+2α(L(G)⊗ In+p).
Since the ultimate bound given in the last part of the above

paragraph depends on the design parameters of the proposed dis-
tributed input and state estimation architecture, it can be used as
design metric such that the design parameters can be judiciously
selected to make the above ultimate bound small. For example,
we may choose a small value for σi and Ki such that the bound φ̄

becomes small, which appears on the above ultimate bound ex-
pression through the term µ . Note that in [7] we did not always
have a great flexibility in choosing σi and Ki small, since this
may make the linear matrix inequality (7) infeasible.

4 ILLUSTRATIVE EXAMPLE
In this section, we illustrate the results presented in the pre-

vious section. For this purpose, we consider the benchmark pro-
cess in [7] that is composed of two decoupled systems with the
dynamics given by (1), where

A =


0 1 0 0
−ω2

n1 −2ωn1ξ1 0 0
0 0 0 1
0 0 −ω2

n2 −2ωn2ξ2

 , (16)

B =


0 0

ω2
n1 0
0 0
0 ω2

n2

 , (17)

with ωn1 = 1.2,ξ1 = 0.9,ωn2 = 1.3, and ξ2 = 0.5. This pro-
cess can represent a linearized simple vehicle model with the
first and third states corresponding to the positions in the x and y
directions, respectively, while the second and fourth states corre-

1 4 7 10

2 5 8 11

3 6 9 12

FIGURE 4.1. Communication graph of the sensor network with four
active nodes 1, 2, 4, 5 and eight passive nodes 3, 6, 7, 8, 9, 10, 11,
12 (lines denote communication links, squares denote active nodes, and
circles denote passive nodes).
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sponding to the velocities in the x and y directions, respectively.
The initial conditions are set to xT

0 = [−3, 0.5, 2.5, 0.25]T. In
addition, we consider the input given by

w(t) =
[

2.5sin(0.3t)
0.5cos(0.5t)

]
. (18)

For the numerical results presented in this section, we con-
sider a sensor network with 12 nodes exchanging information
over an undirected and connected graph topology, where there
are 4 active nodes and 8 passive nodes as shown in Figure 4.1.
Each node’s sensing capability is represented by (2) with the out-
put matrices

Ci =

[
1 0 0 0
0 0 1 0

]
, (19)

for the odd index nodes and

Ci =

[
0 1 0 0
0 0 0 1

]
. (20)

for the even index nodes. Moreover, all nodes are subject to zero
initial conditions and we set Ki = diag([10;10]) and σi = 0.00001
for i = 1, . . . ,N. For the observer gain Li, the odd index nodes are
subject to

Li =


8.137 0
8.102 0

0 8.538
0 11.446

 , (21)

while the even index nodes are subject to

Li =


−13.389 1.384
19.178 −1.960
1.510 −13.402
−2.153 20.143

 . (22)

For active and passive nodes we set α = 25. In addition, we

FIGURE 4.2. State estimates of the sensor network with four active
nodes and eight passive nodes under the proposed architecture (3) and
(4) (the dash lines denote the states of the actual process and the solid
lines denote the state estimates of nodes).

obtain from (14)

P1 =


12.42 −1.40 −2.99 −0.71 7.26 −3.13
−1.40 6.53 −0.16 −0.80 4.28 −0.70
−2.99 −0.16 5.17 −3.18 −2.49 −0.99
−0.71 −0.80 −3.18 3.55 −0.70 2.54
7.26 4.28 −2.49 −0.70 10.55 −3.15
−3.13 −0.70 −0.99 2.54 −3.15 3.06

 ,
(23)

P2 =


7.84 5.45 −0.54 −0.26 1.97 0.13
5.45 7.06 −0.28 −0.07 5.45 −0.28
−0.54 −0.28 5.82 4.21 0.04 1.92
−0.26 −0.07 4.21 5.52 −0.26 4.20
1.97 5.45 0.04 −0.26 10.49 −1.51
0.13 −0.28 1.92 4.20 −1.51 7.62

 ,
(24)

P3 =


0.21 0.05 0 0 0.21 0
0.05 0.11 0 0 0.05 0

0 0 0.24 0.05 0 0.24
0 0 0.05 0.15 0 0.05

0.21 0.05 0 0 0.41 0
0 0 0.24 0.05 0 0.42

 . (25)

Note that P1 = P5, P2 = P4 and P3 = P6 = P7 = P8 = P9 = P10 =

P11 = P12. Based on the matrix Pi, i = 1,2, . . . ,12, we obtain

Hi =

[
Mi Si
Ti Ni

]
= P−1

i and matrices Mi,Si,Ti, and Ni are selected

accordingly.
Under the proposed distributed estimation architecture (3)
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FIGURE 4.3. Input estimates of the sensor network with four active
nodes and eight passive nodes under the proposed architecture (3) and
(4) (the dash lines denote the inputs of the actual process and the solid
lines denote the input estimates of nodes).

and (4), nodes are able to closely estimate the process states and
inputs as shown in Figures 4.2 and 4.3, respectively. Recall that
in [7], although the state estimation is good (see Figure 2 in [7]),
the input estimation performance depends on the number of ac-
tive nodes in the sensor networks. When passive nodes dominate
the sensor networks, the input estimation cannot give a desired
estimation performance (see Figure 3 in [7]). The proposed algo-
rithm in this paper; however, can closely estimate process input
with only a small subset of active nodes as shown in Figure 4.3.

5 CONCLUSION
In order to contribute to the previous studies in heteroge-

neous sensor networks, we proposed a new distributed input and
state estimation approach. In addition, the stability of the overall
sensor network subject to the proposed approach as well as its
performance were analyzed in detail. The illustrative example
had shown that nodes can closely estimate both states and in-
puts of the process, and hence, validated the proposed theoretical
contribution of this paper. Our future research will include gen-
eralizing the current results to the case where the active-passive
role of each agent varies over time and considering the noise in
the sensors as stochastic processes.
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