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Abstract
A local state emulator-based adaptive control law is proposed

for multiagent systems with agents having linear time-invariant
dynamics. Specifically, we present and analyze a distributed
adaptive control architecture, where agents achieve system-level
goals in the presence of exogenous disturbances. Apart from
existing relevant literature that makes specific assumptions on
network topologies, agent dynamics, and/or the fraction of agents
subjected to disturbances, the proposed approach allows agents
to achieve system-level goals — even when all agents are sub-
ject to exogenous disturbances. Several numerical examples are
provided to demonstrate the efficacy of our approach.

1 Introduction
The distributed control of networked multiagent systems,

in which groups of agents work together to achieve a common
goal through local peer-to-peer information exchange, has seen
many advancements in the past decade (see, for example, [1],
[2], and references therein). Such networks are envisioned for
applications in demanding, human interactive, and safety criti-
cal systems where resilience in the presence of disturbances is
required. Until recently, however, much work has focused on
fixed-gain distributed controllers, which are unable to recover
the desired performance in the presence of unknown exogenous

disturbances as outlined in [3] and [4]. Specifically, these systems
do not have a centralized mechanism to monitor for node failures,
malicious attacks, network link failures, and other disturbances,
which can lead to system instability and failure to achieve the
system-level goals as described in [3] and [5].

Several approaches, most notably in [6–9], have been devel-
oped to detect node disturbances and mitigate their effects. These
approaches simply assume that a node’s information is no longer
usable and all information from the node is ignored, which may
not be appropriate in scenarios where the effect of the disturbance
can be suppressed. The authors of [8] and [10] make assump-
tions on the network topology (other than the standard assumption
of connectedness) requiring the underlying communication net-
work to be known. In addition, [7], [10], and [11] assume that a
maximum number of nodes are disturbed, which can be a strict
assumption in hostile environments. Computationally expensive
observer techniques are considered in [8] and [9]. In [12], the au-
thors focus on discovering subsets of disturbed nodes and require
neighboring nodes to mitigate the disturbance effects.

To address the short–comings of current approaches, we
propose in this paper a distributed adaptive control approach for a
benchmark consensus problem, without loss of generality, in the
presence of exogenous disturbances for agents with linear time-
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invariant dynamics. Specifically, in order to achieve the desired
network performance, an adaptive control approach utilizing local
state emulators is employed. Similar approaches are reported
in [13] and [14], but only for the case where agents have single
integrator dynamics. While the authors of [15–17] consider the
consensus problem for agents with disturbed linear time-invariant
dynamics, [15] only considers disturbances which are polytopic in
nature, [16] considers that agents must track an undisturbed leader,
which is not practical for leader–less networks, and [17] requires
that agents exchange their disturbance estimates as well as their
state estimates, which incurs a higher communication cost, and
which assumes that the communication channels are not disturbed.
We show that for agents with linear time invariant dynamics, the
effects of exogenous disturbances affecting any subset (or all)
agents can be mitigated though local state information exchange.

The organization of this paper is as follows. First, we in-
troduce some necessary notation from linear algebra and graph
theory used throughout this paper. We then present the main
results of this paper where we demonstrate the stability of the
system in the presence of constant disturbances. Finally, we
demonstrate the efficacy of our proposed control approach with
several numerical examples.

2 Mathematical Preliminaries
The notation used in this paper is fairly standard. Specifically,

Rn denotes the set of real n× 1 column vectors, Rm×n denotes
the set of real m× n matrices, R+ denotes a set of positive real
numbers, Rm×n

+ (resp., R̄m×n
+ ) denotes a set of real m×n positive

definite (resp., nonnegative-definite) real matrices, Sm×n
+ (resp.,

S̄m×n
+ ) denotes a set of real, positive definite (resp., nonnegative

definite) symmetric real matrices, Z the set of integers, Z+ (resp.,
Z̄+) denotes the set of positive (resp., nonnegative) integers, 0n an
n×1 vector with 0 entries, 1n an n×1 vector with all entries set
to 1, 0m×n a m×n matrix with all entries set to 0, 1m×n a m×n
matrix with all entries set to 1, and In denotes the n×n identity
matrix. Furthermore, we write (·)T for the transpose, ‖ · ‖2 for
the Euclidean norm, λi(A) for the i-th eigenvalue of A (ordered
from least to greatest), diag(a) for the diagonal matrix with the
vector a on its diagonal, [A]i j for the entry of the matrix A on the
i-th row and j-th column, spec(A) for the ordered spectrum of the
matrix A, and JA for the Jordan decomposition of the matrix A.

Next, we recall some of the basic notions from graph theory,
where we refer to references [4] and [18] for further details. An
undirected graph G is defined by a set VG = {1, . . . ,N} of nodes
and a set EG ⊂ VG ×VG of edges. Furthermore, the number of
agents, N, in the network is given by N = |VG |. If (i, j) ∈ EG ,
then the nodes i and j are neighbors and the neighboring relation
is indicated with i ∼ j. The degree of a node is given by the
number of its neighbors. Letting di be the degree of node i,
then the degree matrix of a graph G, D(G) ∈ Rn×n, is given by
D(G) , diag(d), d = [d1, . . . ,dN ]

T. A path i0i1 . . . iL is a finite
sequence of nodes such that ik−1 ∼ ik, k = 1, . . . ,L, and a graph G

is connected if there is a path between any pair of distinct nodes.
The adjacency matrix of a graph G, A(G) ∈ Rn×n, is given by

[A(G)]i j ,

{
1, if (i, j) ∈ EG ,
0, otherwise.

The Laplacian matrix of a graph, L(G) ∈ S
n×n
+ , playing a central

role in many graph theoretic treatments of multiagent systems, is
given by L(G),D(G)−A(G). The spectrum of the Laplacian
of a connected, undirected graph can be ordered as

0 = λ1(L(G))< λ2(L(G))≤ ·· · ≤ λn(L(G)). (1)

Furthermore, there exist p, q ∈ Rn such that

qTL(G) = 0, L(G)p = 0, (2)

and qT p = 1. Note that q and p are normalized left and right
eigenvectors associated with the zero eigenvalue of L(G), respec-
tively. For the ease of exposition, we will assume p = 1N for the
reminder of this paper without loss of generality. Throughout
this paper, we model a given multiagent system by a connected,
undirected graph G, where nodes and edges represent agents and
inter-agent communication links, respectively. Finally, the results
of the following lemma will be used through this paper.

Lemma 1 (Theorem 2, [19]). Consider a group of agents
communicating over a connected, undirected graph G where each
agent has local dynamics given by

ẋi(t) = Axi(t)+Bui(t), xi(t0) = xi0, (3)
yi(t) =Cxi(t), (4)

subject to the controller

ui(t) =−

[
K ∑

i∼ j
(yi(t)− y j(t))

]
. (5)

If

Rank(C) = Rank
(

C
BTP̄

)
, (6)

where P̄ ∈ Sn×n
+ satisfies

P̄A+ATP̄−2P̄BBTP̄+ In = 0, (7)

then, if the feedback gain matrix K = max{1,λ−1
k,min}K0, where

λk,min is the minimum non-zero eigenvalue (Fielder eigenvalue)
of the associated Laplacian, and K0 is a solution of

K0C = BTP̄, (8)

the eignevalues of

A−λk(L(G))BKC, k > 1, (9)
A−diBKC, i ∈ V(G), (10)

lie in the open left half plane, that is spec(A−λk(L(G))BKC)<
0, and spec(A− diBKC) < 0, where λk(L(G)) are the non-zero

2 Copyright c© 2017 by ASME



eigenvalues of the associated Laplacian matrix.

3 Resilient Networks for Linear Time-Invariant
Systems
In this section, we propose a networked control approach

for coordination of agents with linear time-invariant dynamics
in the presence of persistent local agent disturbances. First, we
present the local agent system dynamics and propose a novel
method for mitigating the effects of local agent disturbances.
Next, we demonstrate that the agent dynamics converge to the
designed local state emulator dynamics. Finally, we characterize
and rigorously analyze the performance of the local agent state
emulator.

3.1 Problem Formulation
Consider a networked multiagent system whose agents are

subject to disturbances such that their dynamics are given by

ẋi(t) = Axi(t)+B(ui(t)+wi), xi(t0) = xi0, (11)
yi(t) =Cxi(t), (12)

where xi(t)∈Rn denotes the state of agent i, i= 1,2, . . . ,N, ui(t)∈
Rm denotes the control input to agent i, wi ∈ Rm denotes the
constant unknown disturbance affecting agent i, yi(t)∈Rl denotes
the output of agent i, A ∈ Rn×n denotes the local agent state
transition matrix of agent i, B ∈ Rn×m denotes the control input
matrix of agent i, C ∈ Rl×n denotes the output matrix of agent i,
and we assume the system (A,B,C) is stabilizable and detectable.

Remark 1. Note that a local controller may be used to place
the eigenvalues of the local state transition matrix A to achieve a
desired response.

Since our aim is to mitigate the effect of local disturbances
in order to synchronize agent outputs, consider the relative output
feedback controller

ui(t) =−

[
K ∑

i∼ j
(yi(t)− y j(t))

]
− ŵi(t), (13)

where K ∈ Rm×m is an output feedback gain matrix, y j(t) is the
output of agent j, j = 1,2, . . . ,N, and ŵi(t) is the estimate of the
disturbance of agent i to be designed. Using (12) and (13) in (11),
the local agent dynamics can be rewritten as

ẋi(t) = Axi(t)−B
[

K ∑
i∼ j

(Cxi(t)−Cx j(t))+ ŵi(t)−wi

]
,

= Axi(t)−B
[

KC ∑
i∼ j

(xi(t)− x j(t))+ ŵi(t)−wi

]
. (14)

Next, consider the local state emulator for agent i, character-
izing the desired local behavior, given by

˙̂xi(t) = Ax̂i(t)−BKC ∑
i∼ j

(x̂i(t)− x j(t)), x̂i(t0) = xi0, (15)

where x̂i(t) denotes the state emulator state of agent i, and note
that while the state emulator has no local disturbance sources,
disturbances may enter through information exchange.

Our next objective is to design a local weight update law
ŵi(t) to mitigate the effect of the local disturbance wi. To this end,
consider the weight update law given by

˙̂wi(t) = αBTPix̃i(t), wi(t0) = wi0, (16)

with α > 0 being the system learning rate, x̃i(t) denoting the
system error defined as

x̃i(t), xi(t)− x̂i(t), (17)

and Pi ∈ Sn×n
+ satisfies the Lyapunov equation

Pi(A−diBKC)+(A−diBKC)TPi +Qi = 0, (18)

where Qi ∈ Sn×n
+ .

Remark 2. If K is chosen according to (8), then spec(A−
diBKC)< 0 as a direct result of Lemma 1, which implies solutions
to (18) exist. Note that Lemma 1 only gives sufficient conditions
for solutions to exist, and there may be other methods to choose a
valid stabilizing matrix.

Now, using (14) and (15), the system error dynamics, charac-
terizing the difference between the local agent dynamics and the
desired local state emulator dynamics, can be given by

˙̃xi = (A−diBKC)x̃i(t)+Bw̃i(t), x̃i(t0) = 0, (19)

where the weight update error is defined as

w̃i(t), wi− ŵi(t), (20)

and

˙̃wi(t) =− ˙̂wi(t). (21)

Finally, using (19), the local agent state emulator in (15) can be
rewritten as

˙̂xi(t) = Ax̂i(t)−BKC ∑
i∼ j

(x̂i(t)− x j(t))±BKC ∑
i∼ j

x̂ j(t),

= Ax̂i(t)−BKC ∑
i∼ j

(x̂i(t)− x̂ j(t))+BKC ∑
i∼ j

x̃ j(t). (22)

This concludes the setup of our problem. In the next section, we
present the performance and stability guarantees for the system
given by (11) and (12) subject to the controller (13).

3.2 Performance and Stability Analysis of the Closed-
Loop Error Dynamics

In this section, we begin our analysis of the networked mul-
tiagent system. Specifically, we give sufficient conditions to
demonstrate that the local agent dynamics converge to the desired
state emulator dynamics. Note that we will discuss the stabil-
ity and performance of the state emulator dynamics in the next
section.
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In the next theorem, we show that the system state xi(t)
converges to the state emulator x̂i(t).

Theorem 1. Consider an agent with uncertain dynamics
given by (11) and (12), which satisfy condition (6), subject to con-
troller (13), where the feedback gain has been chosen according to
(8), with state emulator given by (15), and the adaptive feedback
control law given by (16), that exchange local information over a
connected, undirected graph G. Then the solution (x̃i(t),Bw̃i(t))
is uniformly exponentially stable for all (0,Bw̃i0) ∈ Rn×Rn.

Proof. Consider the Lyapunov function candidate for an individ-
ual agent given by

V (x̃i(t), w̃i(t)) = x̃T
i (t)Pix̃i(t)+

1
α

w̃T
i (t)w̃i(t), (23)

and note that V (0,0) = 0 and V (·) > 0, ∀x̃i(t), w̃i(t) ∈ R\{0}.
Differentiating V (·) along system trajectories (19) and (21) yields

V̇ (·) = ˙̃xT
i (t)Pix̃i(t)+ x̃T

i (t)Pi ˙̃xi(t)+
1
α

˙̃w
T
i (t)w̃i(t),

= x̃T
i (t)

[
(A−diBKC)TPi +Pi(A−diBKC)

]
x̃i(t)

+2xT
i (t)PiBw̃i(t)−2x̃T

i (t)PiBw̃i(t),

=− x̃T
i (t)Qix̃i(t),

≤−λmin(Q)‖x̃i(t)‖2
2. (24)

Hence, the closed loop error dynamics given by (19) and (21)
are Lyapunov stable for all initial conditions. By evoking the
Barbashin-Krasovskii-LaSalle Theorem ([20]), x̃i(t) uniformly
asymptotically vanishes as t → ∞, and as a result of (19),
Bw̃i(t) → 0 as t → ∞. Additionally, due to the system’s lin-
ear time-invariant dynamics, since (x̃i(t),Bw̃i(t)) is uniformly
asymptoticly stable, then it is also uniformly exponentially stable
([21]). �

Remark 3. Theorem 1 demonstrates that the error system
dynamics (x̃i(t),Bw̃i(t)) are exponentially stable, which is suffi-
cient to show that the agent’s states, xi(t), converge to the agent’s
state emulator, x̂i(t). However, it is worth noting that, if, in addi-
tion to the assumptions outlined in Theorem 1, BTB is invertible,
then it can be shown that the solution (x̃i(t), w̃i(t)) is uniformly
exponentially stable for all (0, w̃i0) ∈ Rn×Rm.

Remark 4. Note that Theorem 1 assumes the local agent
dynamics satisfy condition (6), and the feedback gain matrix K
has been chosen according to (8), which are sufficient conditions
for the existence of Pi ∈ S+. If a feedback gain K can be found
such that solutions to (18) exist, then the results of Theorem 1
hold regardless of the results of Lemma 1.

3.3 Performance and Stability Analysis of the State
Emulator

In this section, we rigorously analyze the response of the
system state emulator.

To begin, consider the aggregated state vectors given by

x(t) = [xT
1 (t),x

T
2 (t), . . . ,x

T
N(t)]

T ∈ RnN , (25)

x̂(t) = [x̂T
1 (t), x̂

T
2 (t), . . . , x̂

T
N(t)]

T ∈ RnN , (26)

x̃(t) = [x̃T
1 (t), x̃

T
2 (t), . . . , x̃

T
N(t)]

T ∈ RnN , (27)

w̃(t) = [w̃T
1 (t), w̃

T
2 (t), . . . , w̃

T
N(t)]

T ∈ RmN , (28)

P = diag([BTP1, . . . ,BTPN ]) ∈ RmN×nN , (29)

and using (16), (19), and (22), the system dynamics can be written
in the compact form

˙̂x(t) =Ux̂(t)+ [A(G)⊗BKC]x̃(t), (30)
˙̃x(t) = [IN⊗A−∆⊗BKC]x̃(t)+ [IN⊗B]w̃(t), (31)
˙̃w(t) = −αPx̃(t), (32)

with

U , IN⊗A−L(G)⊗BKC. (33)

Since we are interested in synchronizing the outputs of all
agents, we investigate the properties of the associated graph Lapla-
cian as well as the local agent state transition matrix A. To this
end, consider the Jordan decompositions

L(G) = RJL(G)R−1, (34)

A = SJAS−1, (35)

where R and S are the transformation matrices of the associated
graph Lapalcian v and the local agent state transition matrix re-
spectively, and the first column of R is denoted as p = 1N and the
first row of R−1 is denoted as qT. Because L(G) is connected and
undirected,

JL =


λ1 . . . 0 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λN

 ,
=

[
0 0T

N−1
0N−1 J̄L

]
, (36)

with λi being the i-th eigenvalue of the associated graph Laplacian
ordered according to (1), and

J̄L ,

λ2 . . . 0
...

. . .
...

0 . . . λN

 . (37)

Similarly,

JA =

[
JA(0) 0T

n−r×r
0n−r×r J̄A

]
, (38)

where JA(0) ∈ Rr×r are the aggregated Jordan blocks associated
to the zero eigenvalue(s) of the state transition matrix (if A has
a non-zero null space), r is the algebraic multiplicity of the zero
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eigenvalue of A and J̄A ∈ Rn−r×n−r being the Jordan blocks as-
sociated with the non-zero eigenvalue(s) of A, which implies
spec(J̄A)< 0. The number of Jordan blocks associated to the zero
eigenvalue is given by its geometric multiplicity.

Example 1. To elucidate this point, consider an agent who’s
dynamics have a zero eigenvalue with geometric multiplicity of 2
and algebraic multiplicity of 3, JA(0) can be given by

JA(0) =

0 1 0
0 0 0
0 0 0

 .
N

Using the decompositions given in (36) and (38), the state
emulator transition matrix U given by (33) can be decomposed as

JU =(R−1⊗S−1)(IN⊗A−L(G)⊗BKC)(R⊗S),

=(R−1INR⊗S−1AS)− (R−1L(G)R⊗KS),

=(IN⊗ JA)− (JL⊗KS),

=


JA . . . 0n 0n
0n JA−λ2KS . . . 0n
...

...
. . .

...
0n 0n . . . JA−λNKS

 ,
=

[
JA(0) 0T

N(n−r)
0N(n−r) J̄U

]
, (39)

where KS = S−1BKCS, J̄U , IN−1 ⊗ JA − J̄L ⊗ KS, λk, k =
1,2, . . . ,N are the non-zero eigenvalues of the associated Lapla-
cian, and the system state emulator dynamics can be equivalently
given by

˙̂x(t) = T−1JU T x̂(t)+ [A(G)⊗BKC]x̃(t), (40)

with T , R⊗S.

Next, the system given by (40) can be broken into convergent
and non-convergent dynamics, where the convergent dynamics
exponentially decay to 0, and the non-convergent dynamics are
driven to a solution dependent on the local agent dynamics given
by A, which will be analyzed in Theorem 3. To this end, let

˙̂z(t) = JA(0)ẑ(t)+A1x̃(t), ẑ(t0) = χ10, (41)
˙̂c(t) = J̄U ĉ(t)+A2x̃(t), ĉ(t0) = χ20, (42)

where ẑ(t) denotes the non-convergent system dynamics, ĉ(t)
denotes the convergent system dynamics, χ10 ∈ Rr is given
by the first r elements of x̂0, χ20 ∈ RNn−r is given by the last
Nn− r elements of x̂0, A1 ∈ Rr×Nn is given by the first r rows
of T−1[A(G)⊗BKC]T , and A2 ∈ Rr×Nn−r is given by the last
Nn− r rows of T−1[A(G)⊗BKC]T .

Finally, the closed-loop system dynamics given by (31), (32),

and (40) can be written in the compact form

ξ̇ (t) = Mξ (t), ξ (t0) = [χT
10,χ

T
20,0, w̃

T
0 ]

T, (43)

with

ξ ,
[
ẑT(t), ĉT(t), x̃T(t), w̃T(t)

]T ∈ R2Nn+Nm, (44)

and

M =


JA(0) 0 A1 0

0 J̄U A2 0
0 0 IN⊗A−∆⊗BKC IN⊗B
0 0 −αP 0

 ,
(45)

is the partitioned system matrix where the dimensions have been
omitted for brevity. The next theorem demonstrates the stability
of the closed-loop system dynamics given by (43).

Theorem 2. Consider an agent with uncertain dynamics
given by (11) and (12), which satisfy condition (6), subject to con-
troller (13), where the feedback gain has been chosen according to
(8), with state emulator given by (15), and the adaptive feedback
control law given by (16), that exchange local information over
a connected, undirected graph G. Then, the convergent system
dynamics given by (42) are exponentially stable.

Proof. Consider the partitioned system transition matrix given by
(45), which demonstrates that the convergent and non-convergent
dynamics can be decoupled, and the stability of the convergent
dynamics given by ĉ(t) depend only on

spec(J̄U )
⋃

spec
([

IN⊗A−∆⊗BKC IN⊗B
−αP 0

])
. (46)

Theorem 1 showed that

spec
([

IN⊗A−∆⊗BKC IN⊗B
−αP 0

])
< 0, (47)

which implies that we only need demonstrate that spec(J̄U )< 0.
Consider that spec(J̄U ) is given by

spec(J̄U ) = {spec(JA−λk(L(G))Ks) : k ∈ [2,N]} ,
= {spec(A−λk(L(G))BKC) : k ∈ [2,N]} ,
< 0, (48)

as direct consequence of Lemma 1, and it follows that the conver-
gent mode system dynamics (42) are exponentially stable. �

Remark 5. Note that Theorem 2 assumes the local agent
dynamics given satisfy condition (6), and the feedback gain K
has been chosen according to (8), which are sufficient conditions
for spec(J̄U ) < 0. If a feedback gain K can be found such that
spec(J̄U )< 0 holds, then the results of Theorem 2 hold regardless
of the results of Lemma 1.

Remark 6. Theorem 2 implies that the states of the local
agent system dynamics corresponding to the negative eigenval-
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ues of the local agent system state transition matrix A are ex-
ponentially stable and the corresponding shared states of xi(t)
exponentially converge. Note that the stability of the system then
depends only on the stability of the states corresponding to the
zero eigenvalue(s) of the local agent system state transition matrix
A.

In the next theorem, we analyze the stability of the system’s
non-convergent dynamics given by (41).

Theorem 3. Consider an agent with uncertain dynamics
given by (11) and (12), which satisfy condition (6), subject to con-
troller (13), where the feedback gain has been chosen according
to (8), with state emulator given by (15), and the adaptive feed-
back control law given by (16), that exchange local information
over a connected, undirected graph G. Then, all agents reach a
consensus.

Proof. Consider the non-convergent system dynamics given by
(41). Then, the non-convergent state emulator dynamics can be
given by

˙̂xr(t) = (pT⊗S−1)JA(0)(q⊗S)x̂r(t)+A1x̃(t),

x̂r(0) = χ10, (49)

with x̂r(t) denoting the local state emulator states corresponding
to zero eigenvalues(s) of the local system transition matrix. Then,
the solution to the system described by (49) can be given by

x̂r(t) = (pT⊗S−1)eJA(0)t(q⊗S)χ10

+
∫ t

0
(pT⊗S−1)eJA(0)(t−τ)(q⊗S)A1x̃(t)dτ. (50)

In Theorem 1, we demonstrated x̃(t) is uniformly exponentially
stable, which implies∫

∞

0
(pT⊗S−1)eJA(0)(t−τ)(q⊗S)A1x̃(t)dτ = θ , (51)

such that ‖θ‖< θ ∗where θ ∈ Rr×1 and θ ∗ is a computable upper
bound. Then, the solution (50) implies that the non-convergent
system dynamics can be given by

x̂r(t)→ (1N⊗S)eJA(0)t(qT⊗S−1)x̂(t0)+θ , (52)

and each individual agent’s state emulator converges to

x̂i(t)→ ∑
k∈V(G)

qkSeJA(0)tS−1x̂k(t0)+θi. (53)

Since θ is bounded, the non-convergent system dynamics are
bounded and it follows that all agents reach a consensus as t→
∞. �

Remark 7. Theorem 3 demonstrates that all agents will
reach a consensus as t → ∞ on a quantity determined by the
structure SeJA(0)tS−1, which represents the average of each agent’s
response to the local system dynamics corresponding to the zero
eigenvalue(s) of the local state transition matrix A, replicating

well known results in literature (see, for example, [22],[23]). In
addition, if the system is undisturbed, the non-convergent system
dynamics will converge to the quantity given by

x̂i(t)→ ∑
k∈V(G)

qkSeJA(0)tS−1x̂k(t0). (54)

Note that (54) may have a non-zero steady state response as
demonstrated in the following examples.

Example 2. Consider the case were each agent has first-
order integrator dynamics given as ẋi = ui. In this case, S = 1 and
JA(0) = 0 and, as a result, xi(t)→ qTx(t0) as t → ∞. Note this
example only shows where the states of each agent corresponding
to the zero eigenvalue of the state transition matrix A will converge
and does not include disturbances. N

Example 3. Next, consider the case where local agent dy-
namics are second-order integrators given as ẍi = ui with the
Jordan decomposition of the local state transition matrix A given

by S = I2 and JA(0) =
[

0 1
0 0

]
. The solution (54) can be given as

ẋi(t)→ qTẋ j(t0), xi(t)→ qTx j(t0)+qTẋ j(t0)t as t→∞. Note this
example only shows where the states of each agent correspond-
ing to the zero eigenvalues of the state transition matrix A will
converge and does not include disturbances. N

Remark 8. Note that Theorem 3 assumes the local agent dy-
namics given satisfy condition (6), and the feedback gain matrix
K has been chosen according to (8), which are sufficient condi-
tions for the results of Theorem 1 to hold. If Theorem 1 holds, the
results of Theorem 3 hold regardless of the results of Lemma 1.

Remark 9. As shown in equation (50), x̃(t) acts as a vanish-
ing disturbance to the system’s non-convergent dynamics. Note, if
‖θ‖2 is sufficiently small, then agents not only achieve consensus
but consensus will occur near the undisturbed system consensus
point, x̂i(t)→ ∑k∈V(G) qkSeθ tS−1x̂k(t0). In addition, increasing
α will decrease ‖θ‖2. For proof, consider the summation of the
Lyapunov function candidates in the proof of Theorem 1 given by

V (x̃(t), w̃(t)) = ∑
i∈V(G)

x̃T
i (t)Pix̃i(t)+ w̃i

T(t)w̃i(t)/α. (55)

Taking the time derivative yields

V̇ (x̃(t), w̃(t)) =− ∑
i∈V(G)

x̃T
i (t)Qix̃i(t). (56)

Therefore, V (x̃(t), w̃(t)) ≤ V (x̃(t0), w̃(t0)) = w̃T
0 w̃0/α and

∑i∈V(G) x̃T
i (t)Pix̃i(t) ≤ w̃T

0 w̃0/α . As α is increased, the magni-
tude of the vanishing perturbation term ‖x̃‖ becomes smaller,
decreasing ‖θ‖2. However, as with all adaptive control archi-
tectures, increasing the learning rate excessively may result in
reduced time delay margins, highly oscillatory control inputs, and
other implementation issues ([24, 25]).
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4 Illustrative Numerical Examples

In this section, we demonstrate the efficacy of our approach
through several numerical examples. In particular, it is shown
that agents achieve consensus in the presence of constant, ran-
domly selected disturbances. In our first example, we consider
agents with second order linear dynamics where output feedback
is utilized to reach a consensus. In our second example, we reach
a consensus on the states of three F-16 aircraft with full state
feedback.

4.1 Example 1: Output Feedback

Consider a network of three agents whose dynamics are given
by

A =

[
0 1
0 −2

]
, B =

[
0
1

]
, C = [2.99 1.94], (57)

which communicate according to the connected, undirected graph
described by

L(G) =

 1 −1 0
−1 2 −1
0 −1 1

 . (58)

Solving for (7) for this system yields,

P̄ =

[
2.6458 1.0000
1.0000 0.6458

]
, (59)

which satisfies (6) and gives K = 0.3333. Letting x1(0) =
[4,−0.5], x2(0) = [−2,1], and x3(0) = [1,−3], we see that with-
out control, the states of each agent’s dynamics naturally tends to
x1(∞) = [3.75,0], x2(∞) = [−1.5,0], and x3(∞) = [−0.5,0]. Not-
ing that qT = 1

3 [1 1 1] is a left eigenvalue of (58) and solving (54),
we find the undisturbed system approaches xi1(∞) = 0.58 and
xi2(∞) = 0 as t→∞. With only the standard consensus algorithm,
Figure 1 shows that the agents cannot reach a consensus in the
presence of disturbances, where the constant disturbances are ran-
domly selected as wi ∈ [−1,1]. Using the controller in (13) and
(16) with the parameters designed above and α = 1, the system
reaches a consensus even in the presence of constant disturbances
as seen in Figure 2. Increasing the learning gain α drives the
system closer to the undisturbed system centroid as shown in
Figure 3. N

4.2 Example 2: F-16 Aircraft

In this example, we consider the longitudinal dynamics of
three identical F-16 aircraft whose dynamics are described by

A =


−0.0507 −3.8610 0 −32.2000
−0.0012 −0.5164 0.9283 −0.0975
−0.0001 1.4168 −2.1382 −2.2372

0 0 1.0000 0

 , (60)
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Figure 1. States of each agent subject to constant disturbances
with only the standard consensus controller applied.
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Figure 2. States of each agent with the controller in (13) and (16)
applied where α = 1. The dashed line indicates the undisturbed
system centroid.

B =


0

−0.0717
−1.6450

0

 , (61)

as given in [26], where the states µ,α,q, and θ are the change
in aircraft speed, angle of attack (AOA), pitch rate, and pitch,
respectively. Agents exchange their states over a connected, undi-
rected line communication graph. Our aim is to synchronize the
aircraft µ values in the presence of disturbances, where the con-
stant disturbances are randomly selected as wi ∈ [−0.08,0.08].
Figure 4 demonstrates that the standard consensus controller is in-
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Figure 3. States of each agent with the controller in (13) and (16)
applied where α = 15. The dashed line indicates the undisturbed
system centroid.
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Figure 4. States of each aircraft subject to constant disturbances
with only the standard consensus controller applied.

sufficient to synchronize the system outputs. In Figure 5, we show
that using the controller in (13) and (16), the system converges to
near the undisturbed system centroid given by (54). Increasing
the learning gain α brings the convergence point closer to the
undisturbed system centroid as shown in Figure 6. N

5 Conclusion
To contribute to resilient networked multiagent control, we

have presented a novel state emulator based adaptive control ar-
chitecture. In particular, we have demonstrated the proposed
controller is able to mitigate the effects of constant disturbances
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Figure 5. States of each aircraft with the controller in (13) and
(16) applied where α = 1. The dashed line indicates the undis-
turbed system centroid.

Time (sec)
0 5 10

7

-6

-4

-2

0

Time (sec)
0 5 10

,

-0.1

0

0.1

0.2

0.3

0.4

Time (sec)
0 5 10

q

-0.2

-0.1

0

0.1

0.2

Time (sec)
0 5 10

3

-0.1

0

0.1

0.2

0.3

0.4

Figure 6. States of each aircraft with the controller in (13) and
(16) applied where α = 15. The dashed line indicates the undis-
turbed system centroid.

and synchronize the outputs of each agent. Unlike previous stud-
ies, which make assumptions on agent dynamics and network
topologies, the presented results hold for agents with general
linear time-invariant dynamics communicating over a connected
undirected directed graph, even when all agents are subject to
disturbances.
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