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Abstract— A distributed input and state estimation archi-
tecture is introduced and analyzed for heterogeneous sensor
networks. Specifically, nodes of a given sensor network are
allowed to have heterogeneous information roles in the sense
that a subset of nodes can be active (that is, subject to
observations of a process of interest) and the rest can be passive
(that is, subject to no observations). In addition, these nodes
are allowed to have nonidentical sensor modalities under the
common underlying assumption that they have complimentary
properties distributed over the sensor network to achieve
collective observability. The key feature of our framework is
that it utilizes local information not only during the execution of
the proposed distributed input and state estimation architecture
but also in its design in that global stability is guaranteed once
each node satisfies given local stability conditions independent
from the graph topology and neighboring information of these
nodes. Several illustrative numerical examples are also provided
to demonstrate the efficacy of the proposed architecture.

I. INTRODUCTION

As technological advances have boosted the development
of integrated microsystems that combine sensing, computing,
and communication on a single platform, we are rapidly
moving toward a future in which large numbers of integrated
microsensors will have the capability to operate in both
civilian and military environments. Such large-scale sensor
networks will support applications with dramatically increas-
ing levels of complexity including situational awareness, en-
vironment monitoring, scientific data gathering, collaborative
information processing, and search and rescue; to name but
a few examples. One of the important areas of research in
sensor networks is the development of distributed estimation
algorithms for dynamic information fusion. Because, these
algorithms are reliable to possible loss of a subset of nodes
and communication links and they are flexible in the sense
that nodes can be added and removed by making only local

†D. Tran is a Graduate Research Assistant of the Mechanical Engineering
Department and a member of the Laboratory for Autonomy, Control,
Information, and Systems (LACIS, http://www.lacis.team/) at the
University of South Florida, Tampa, Florida 33620, United States of
America (email: tran@lacis.team).
‡T. Yucelen is an Assistant Professor of the Mechanical Engineering

Department and the Director of the Laboratory for Autonomy, Control,
Information, and Systems (LACIS, http://www.lacis.team/) at the
University of South Florida, Tampa, Florida 33620, United States of
America (email: yucelen@lacis.team).
∗S. Jagannathan is a Professor of the Electrical and Computer Engineering

Department and the Director of the Embedded Control Systems and Net-
working Laboratory (ECSNL, http://web.mst.edu/∼sarangap/)
at the Missouri University of Science and Technology, Rolla, Missouri
65409, United States of America (email: sarangap@mst.edu).

?This research was supported by the Dynamic Data-Driven Applications
Systems Program of the Air Force Office of Scientific Research.

changes to the sensor network. Although distributed estima-
tion algorithms have had strong appeal for these reasons, a
critical roadblock to achieve correct and reliable dynamic
information fusion with these algorithms is heterogeneity.

Heterogeneity in sensor networks is unavoidable in real-
world applications. To elucidate this fact, consider a target
estimation problem as a motivating example. Specifically,
nodes of a given sensor network can have heterogeneous
information roles in this example such that a subset of nodes
can be subject to observations of this target (active nodes)
and the rest can be subject to no observations (passive nodes).
Thus, during the dynamic information fusion process, only
active nodes have to be taken into account. In addition, note
that nodes of a sensor network can also have nonidentical
sensor modalities; for example, a subset of nodes can sense
the target position and others can sense the target velocity.
This case needs to be considered in the dynamic information
fusion process as well.

Dealing with these classes of heterogeneity in sensor
networks to achieve correct and reliable dynamic information
fusion is a challenging task using distributed estimation
algorithms. Toward this end, notable contributions in the
literature include [1]–[20]. Specifically, the authors of [1]–
[8] propose dynamic consensus algorithms that are suitable
for sensor networks with all nodes being active. However, as
discussed earlier, a subset of nodes in a sensor network can
be passive in that they may not be able to sense a process
of interest and collect information. While the authors of [9]–
[11] present methods that cover specific applications when
a subset of nodes are passive (and the remaining nodes are
active), their results are in the context of static consensus,
and hence, they are not suitable in their presented form for
dynamic data-driven applications.

The authors of [12]–[18] introduced the concept of sensor
networks with active and passive nodes in the context of
dynamic consensus. However, nodes of the considered class
of sensor networks are implicitly assumed to have identical
sensor modalities since each node is modeled using single
integrator dynamics. Finally, the authors of [19] and [20]
consider dynamic information fusion for sensor networks
having nonidentical sensor modalities, where the former
contribution requires each node to be active via sensing
some states of a process of interest. While this is implicitly
not assumed in the latter contribution, global information is
required during the distributed algorithm design in terms of
guaranteeing global stability — although the proposed algo-
rithm can be executed by solely relying on local information
exchange between neighboring nodes.



The contribution of this paper is to introduce and analyze
a distributed input and state estimation architecture for het-
erogeneous sensor networks. Specifically, nodes of a given
sensor network are allowed to have heterogeneous informa-
tion roles in the sense that a subset of nodes can be active
(that is, subject to observations of a process of interest) and
the rest can be passive (that is, subject to no observations).
In addition, these nodes are allowed to have nonidentical
sensor modalities under the common underlying assumption
that they have complimentary properties distributed over the
sensor network to achieve collective observability (see, for
example, [19] and [20], and references therein).

The key feature of our framework is that it utilizes local
information not only during the execution of the proposed
distributed input and state estimation architecture but also
in its design unlike the results in [20]; that is, global
stability is guaranteed once each node satisfies given local
stability conditions independent from the graph topology and
neighboring information of these nodes. As it is standard in
the classical input and state estimation literature (see, for
example, [21]–[25], and references therein), it should be
also noted that we do not make a passivity or passivity-
like assumption by resorting to a similar in spirit idea
from [26]–[31]. Several illustrative numerical examples are
also provided to demonstrate the efficacy of the proposed
architecture.

The organization of this paper is as follows. Section II
introduces necessary mathematical preliminaries to develop
the main results of this paper. System-theoretic design and
analysis of the proposed distributed input and state esti-
mation architecture are given in Section III, where Section
IV presents several illustrative numerical examples. Finally,
concluding remarks are summarized in Section V.

II. MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard. Specif-
ically, R denotes the set of real numbers, Rn denotes the
set of n × 1 real column vectors, Rn×m denotes the set of
n × m real matrices, 1n denotes the n × 1 vector of all
ones, and In denotes the n× n identity matrix. In addition,
we write (·)T for transpose, λmin(A) and λmax(A) for the
minimum and maximum eigenvalue of the Hermitian matrix
A, respectively, λi(A) for the i-th eigenvalue of A, where
A is symmetric and the eigenvalues are ordered from least
to greatest value, diag(a) for the diagonal matrix with the
vector a on its diagonal, [x]i for the entry of the vector x
on the i-th row, and [A]ij for the entry of the of the matrix
A on the i-th row and j-th column.

We now recall some basic notions from graph theory and
refer to textbooks [32] and [33] for details. Specifically,
graphs are broadly adopted in the sensor networks literature
to encode interactions between nodes. An undirected graph
G is defined by a set VG = {1, . . . , N} of nodes and a set
EG ⊂ VG×VG of edges. If (i, j) ∈ EG , then the nodes i and j
are neighbors and the neighboring relation is indicated with
i ∼ j. The degree of a node is given by the number of its
neighbors. Letting di be the degree of node i, then the degree

matrix of a graph G, D(G) ∈ RN×N , is given by

D(G) , diag(d), d = [d1, . . . , dN ]T. (1)

A path i0i1 . . . iL is a finite sequence of nodes such that
ik−1 ∼ ik, k = 1, . . . , L, and a graph G is connected if there
is a path between any pair of distinct nodes. The adjacency
matrix of a graph G, A(G) ∈ RN×N , is given by

[A(G)]ij ,

{
1, if (i, j) ∈ EG ,
0, otherwise. (2)

The Laplacian matrix of a graph, L(G) ∈ SN×N+ , playing
a central role in many graph-theoretic treatments of sensor
networks, is given by

L(G) , D(G)−A(G). (3)

The spectrum of the Laplacian of an undirected and con-
nected graph can be ordered as

0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λN (L(G)), (4)

with 1N as the eigenvector corresponding to the zero eigen-
value λ1(L(G)) and L(G)1N = 0N and eL(G)1N = 1N .
Throughout this paper, we assume that the graph G of a
given sensor network is undirected and connected.

Finally, the following lemmas are necessary to develop the
main results of this paper.

Lemma 1 (Proposition 8.1.2, [34]). Let A ∈ Rn×n and
B ∈ Rn×n. If A ≥ 0 and B > 0, then A+B > 0.

Lemma 2 (Proposition 8.2.4, [34]). Let A ∈ Rn×n, B ∈
Rn×m, C ∈ Rm×m, and

X =

[
A B
BT C

]
.

Then, X ≥ 0 if and only if one or both of the conditions
given by

A ≥ 0, C −BTA†B ≥ 0, (I −AA†)B = 0, (5)
C ≥ 0, A−BC†BT ≥ 0, (I − CC†)BT = 0, (6)

hold.

III. DISTRIBUTED INPUT AND STATE ESTIMATION

In this section, we introduce and analyze a distributed
input and state estimation architecture for heterogeneous
sensor networks. For this purpose, consider a process of
interest with the dynamics given by

ẋ(t) = Ax(t) +Bw(t), x(0) = x0, (7)

where x(t) ∈ Rn denotes the unmeasurable process state
vector, w(t) ∈ Rp denotes an unknown bounded input to
this process with a bounded time rate of change, A ∈ Rn×n
denotes a Hurwitz system matrix, and B ∈ Rn×p denotes
the system input matrix.

Next, consider a sensor network with N nodes exchanging
information among each other using their local measure-
ments according to an undirected and connected graph G. In



the sense of [12]–[18], if a node i, i = 1, . . . , N , is subject
to observations of the process (7) given by

yi(t) = Cix(t), (8)

where yi(t) ∈ Rp and Ci ∈ Rp×n denote the measurable
process output and the system output matrix for node i, i =
1, . . . , N , respectively, then we say that it is an active node.
Similarly, if a node i, i = 1, . . . , N , has no observations,
then we say that it is a passive node. Notice that the above
formulation allows for nonidentical sensor modalities since
Ci of active nodes can be different. Here, as standard, we
assume that each active node has complimentary properties
distributed over the sensor network to guarantee collective
observability (see, for example, [19] and [20], and references
therein), although the pairs (A,Ci), i = 1, . . . , N , may not
be locally observable.

In this paper, we are interested in the problem of dis-
tributively estimating the unmeasurable state x(t) and the
unknown input w(t) of the process given by (7) using
a sensor network, where active nodes are subject to the
observations given by (8). For this purpose, the rest of this
section is divided into two parts, where we first introduce the
proposed distributed estimation architecture and then analyze
its stability in detail.

A. Proposed Distributed Estimation Architecture

For node i, i = 1, . . . , N , consider the estimation algo-
rithm given by

˙̂xi(t) = (A− γP−1
i )x̂i(t) +Bŵi(t) + giLi

(
yi(t)

−Cix̂i(t)
)
− αP−1

i

∑
i∼j

(x̂i(t)− x̂j(t)),

x̂i(0) = x̂i0, (9)
˙̂wi(t) = giKi(yi(t)− Cix̂i(t))− (σiKi + γIp)ŵi(t)

−α
∑
i∼j

(ŵi(t)− ŵj(t)), ŵi(0) = ŵi0, (10)

where x̂i(t) ∈ Rn is a local state estimate of x(t) for node
i, ŵi ∈ Rp is a local input estimate of w(t) for node i,
Li ∈ Rn×p and Ki ∈ Rp×p are design matrices of node
i with Ki being symmetric and positive definite, and α, γ,
and σi ∈ R are positive design coefficients for node i. Here,
gi = 1 for active nodes and otherwise gi = 0. In addition,
Pi > 0 is the consensus gain satisfying the linear matrix
inequality given by

Ri =

[
ĀT
i Pi + PiĀi −PiB + giC

T
i K

T
i

−BTPi + giKiCi −2σiKi

]
≤ 0, (11)

where

Āi , A− giLiCi. (12)

Remark 1. The local condition given by (11) for node i,
i = 1, . . . , N , plays a central role in the stability analysis
presented in the next section. Specifically, if the proposed
input and state estimation architecture given by (9) and (10)
satisfies the local condition given by (11) for each node,
then stability is guaranteed for the overall sensor network

globally. In addition, note that the local condition given by
(11) is well-posed. To see this, for example, let Pi satisfy
the linear matrix inequality given by ĀT

i Pi + PiĀi < 0,
i = 1, . . . , N . Then it can be readily shown that there exists
a sufficiently large σi, i = 1, . . . , N , such that (11) holds.
As a special case, if all nodes are active and a well-known
condition PiB = CT

i K
T
i holds (see, for example, [21]–[25],

and references therein), then it can be easily seen that (11)
holds even for sufficiently small values of σi, i = 1, . . . , N .
Similarly, for the same special case when all nodes are
active, if H(s) , KiCi(sI − Āi)

−1B + σiKi is passive,
i = 1, . . . , N , then (11) is feasible and vice versa [35].

B. Stability Analysis

Let x̃i(t) , x(t)− x̂i(t) and w̃i(t) , ŵi(t)−w(t). Then,
based on (9) and (10), we have

˙̃xi(t) = Ax(t) +Bw(t)− (A− γP−1
i )x̂i(t)

−Bŵi(t)− giLi(yi(t)− Cix̂i(t))
+αP−1

i

∑
i∼j

(x̂i(t)− x̂j(t))

= (A− giLiCi)x̃i(t)−Bw̃i(t)
+αP−1

i

∑
i∼j

(x̂i(t)− x̂j(t)) + γP−1
i x̂i(t)

= Āix̃i(t)−Bw̃i(t)− αP−1
i

∑
i∼j

(x̃i(t)− x̃j(t))

−γP−1
i

(
x̃i(t)− x(t)

)
, x̃i(0) = x̃i0, (13)

˙̃wi(t) = giKiCix̃i(t)− σiKi(w̃i(t) + w(t))

−α
∑
i∼j

(w̃i(t)− w̃j(t))

−γ(w̃i(t) + w(t))− ẇ(t), w̃i(0) = w̃i0. (14)

Now, considering the aggregated vectors given by

x̃(t) , [x̃1(t), x̃2(t), . . . , x̃N (t)] ∈ RNn, (15)
w̃(t) , [w̃1(t), w̃2(t), . . . , w̃N (t)] ∈ RNp, (16)

we can write the error dynamics in a compact form as

˙̃x(t) = Āx̃(t)− (IN ⊗B)w̃(t)− P−1(F ⊗ In)x̃(t)

+γP−1(1N ⊗ In)x(t), (17)
˙̃w(t) = Mx̃(t)− K̄

(
w̃(t) + (1N ⊗ Ip)w(t)

)
−(F ⊗ Ip)w̃(t)− γ(1N ⊗ Ip)w(t)

−(1N ⊗ Ip)ẇ(t), (18)

where

Ā , diag([Ā1, Ā2, . . . , ĀN ]), (19)
M , diag([g1K1C1, g2K2C2, . . . , gNKNCN ]), (20)
K̄ , diag([σ1K1, σ2K2, . . . , σNKN ]), (21)
F , αL(G) + γIN , (22)
P , diag([P1, P2, . . . , PN ]), (23)

with L(G) being the Laplacian matrix. Note that P > 0
follows from Pi > 0.



Theorem 1. Consider the process given by (7) and the
distributed input and state estimation architecture given by
(9) and (10). Assume (11) holds and nodes exchange infor-
mation using local measurements subject to an undirected
and connected graph G. Then, the error dynamics given by
(17) and (18) are uniformly bounded.

Proof. Consider the Lyapunov function candidate given by

V (x̃, w̃) = x̃TPx̃+ w̃Tw̃. (24)

Note that V (0) = 0 and V (x̃, w̃) > 0 for all (x̃, w̃) 6= (0, 0).
Taking time-derivative of V (x̃, w̃) along the trajectories of
(17) and (18) yields

V̇ (·) = x̃T(t)(ĀTP + PĀ)x̃(t)− 2x̃T(t)P (IN ⊗B)w̃(t)

−2x̃T(t)(F ⊗ In)x̃(t) + 2γx̃T(t)(1N ⊗ In)x(t)

+2w̃T(t)Mx̃(t)− 2w̃T(t)K̄w̃(t)

−2w̃T(t)(F ⊗ Ip)w̃(t)

−2w̃T(t)(K̄ + γINp)(1N ⊗ Ip)w(t)

−2w̃T(t)(1N ⊗ Ip)ẇ(t)

=
(
x̃T(t)(ĀTP + PĀ)x̃(t)− 2w̃T(t)K̄w̃(t)

−2x̃T(t)
(
P (IN ⊗B)−MT

)
w̃(t)

)
−2x̃T(t)(F ⊗ In)x̃(t)− 2w̃T(t)(F ⊗ Ip)w̃(t)

+2γx̃T(t)(1N ⊗ In)x(t)

−2w̃T(t)(K̄ + γINp)(1N ⊗ Ip)w(t)

−2w̃T(t)(1N ⊗ Ip)ẇ(t)

=
[
x̃T(t) w̃T(t)

]
·
[

ĀTP + PĀ −P (IN ⊗B) +MT

−(IN ⊗BT)P +M −2K̄

] [
x̃(t)
w̃(t)

]
+
[
x̃T(t) w̃T(t)

] [−2(F ⊗ In) 0
0 −2(F ⊗ Ip)

] [
x̃(t)
w̃(t)

]
+2
[
x̃T(t) w̃T(t)

]
·
[

γ(1N ⊗ In)x(t)
−(K̄ + γINp)(1N ⊗ Ip)w(t)− (1N ⊗ Ip)ẇ(t)

]
= zT(t)RAz(t) + zT(t)RBz(t) + 2z(t)φ

= zT(t)Rz(t) + 2z(t)φ, (25)

where

z(t), [x̃T(t), w̃T(t)]T, (26)

RA,

[
ĀTP + PĀ −P (IN ⊗B) +MT

−(IN ⊗BT)P +M −2K̄

]
,

(27)

RB,

[
−2(F ⊗ In) 0

0 −2(F ⊗ Ip)

]
, (28)

R,RA +RB

=

[
ĀTP + PĀ− 2(F ⊗ In) −P (IN ⊗B) +MT

−(IN ⊗BT)P +M −2K̄ − 2(F ⊗ Ip)

]
,

(29)

φ,

[
γ(1N ⊗ In)x(t)

−(K̄ + γINp)(1N ⊗ Ip)w(t)− (1N ⊗ Ip)ẇ(t)

]
.

(30)

Note that (F ⊗ In) > 0 and (F ⊗ Ip) > 0 follows from
F > 0, and hence, RB < 0.

Next, since the linear matrix inequality given by (11)
holds, it follows that

ĀT
i Pi + PiĀi ≤ 0, (31)

Ni , −2σiK − (−BTPi + giKCi)(Ā
T
i Pi + PiĀi)

†

·(−PiB + giC
T
i K

T) ≤ 0, (32)
Qi ,

(
In − (ĀT

i Pi + PiĀi)(Ā
T
i Pi + PiĀi)

†)
·(−PiB + giC

T
i K

T) = 0. (33)

by applying Lemma 2 to (11). Note that

ĀTP + PĀ =


Â1 0 · · · 0

0 Â2 · · · 0
...

...
. . .

...
0 0 · · · ÂN

 ≤ 0, (34)

as a consequence of (31), where Âi , ĀT
i Pi + PiĀi for

i = 1, . . . , N . In addition, it follows from (32) that

N , −2K̄ −
(
− (IN ⊗BT)P +M

)
(ĀTP + PĀ)†

·(−P (IN ⊗B) +MT)

=


N1 0 · · · 0
0 N2 · · · 0
...

...
. . .

...
0 0 · · · NN

 ≤ 0, (35)

holds. Finally, (33) leads to

Q ,
(
INn − (ĀTP + PĀ)(ĀTP + PĀ)†

)
·(−P (IN ⊗B) +MT)

=


Q1 0 · · · 0
0 Q2 · · · 0
...

...
. . .

...
0 0 · · · QN

 = 0. (36)

Now, by Lemma 2, RA ≤ 0 as a direct consequence of (34),
(35) and (36). Thus, by Lemma 1, R = RA +RB < 0.

Note that ‖x(t)‖2 ≤ x̄ (that follows from A being a
Hurwitz matrix), ‖w(t)‖2 ≤ w̄, and ‖ẇ(t)‖2 ≤ ¯̇w. Therefore,
‖φ‖2 ≤ φ̄ with

φ̄,
√
γ2‖(1N ⊗ In)‖22x̄2 + ‖K̄ + γINp‖22‖1N ⊗ Ip‖22w̄2

+‖1N ⊗ Ip‖22 ¯̇w2. (37)

Now, one can write

V̇ (·) = zT(t)Rz(t) + 2zT(t)φ

≤ λmax(R)‖z(t)‖22 + 2‖z(t)‖2φ̄, (38)

with λmax(R) < 0. Letting µ , −2φ̄
λmax(R) > 0 and Ω ,

{z(t) : ‖z(t)‖2 ≤ µ}, it follows that V̇ (·) < 0 outside the
compact set Ω, and hence, the error dynamics given by (17)
and (18) are uniformly bounded [36], [37]. �

The following corollary to the above theorem is now
immediate.



Corollary 1. Consider the process given by (7) and the
distributed input and state estimation architecture given by
(9) and (10). Assume (11) holds and nodes exchange infor-
mation using local measurements subject to an undirected
and connected graph G. Then, the bounds

‖x̃(t)‖2 ≤

√
λmax(P̄ )µ2

λmin(P )
, ψ, (39)

‖w̃(t)‖2 ≤
√
λmax(P̄ )µ2 , ζ, (40)

hold for t ≥ T , where

P̄ =

[
P 0
0 INp

]
. (41)

Proof. Note that

V (·) = x̃T(t)Px̃(t) + w̃T(t)w̃(t)

=
[
x̃T(t) w̃T(t)

] [P 0
0 INp

] [
x̃(t)
w̃(t)

]
= zT(t)P̄ z(t). (42)

In the proof of Theorem 1, we show that V (·) cannot
grow outside the compact set Ω, thus (39) follows from
λmin(P )‖x̃(t)‖22 ≤ V

(
x̃(t), w̃(t)

)
≤ λmax(P̄ )‖z̃(t)‖22 ≤

λmax(P̄ )µ2. Identically, (40) follows from ‖w̃(t)‖22 ≤
V
(
x̃(t), w̃(t)

)
≤ λmax(P̄ )‖z̃(t)‖22 ≤ λmax(P̄ )µ2. The proof

is now complete. �
Remark 2. Since the ultimate bounds given by (39) and

(40) depend on the design parameters of the proposed dis-
tributed input and state estimation architecture, they can be
used as design metrics such that the design parameters can be
judiciously selected to make (39) and (40) small. However,
unlike the stability of our framework that is guaranteed once
each node satisfies the local condition given by (11), such
a performance characterization requires global information.
However, one can further analyze the effect of each specific
design parameter to these ultimate bounds and make conclu-
sions without possibly requiring global information, which
will be considered as a future research direction.

Remark 3. Note that the terms “−γP−1
i x̂i(t)” and

“−(σiKi+γIp)ŵi(t)” appearing respectively in (9) and (10)
are often referred as leakage terms. If the gains “γP−1

i ” and
“σiKi + γIp” respectively multiplying these terms are not
small, then they can result in poor performance (see, for
example, [38], [39] and references therein), and hence, it
is of common practice to choose these multiplier gains to
be small. However, as noted in Remark 1, σi may not be
chosen as sufficiently small unless all nodes are active and
the condition PiB = CT

i K
T
i holds. Therefore, we cast (11)

as an optimization problem given by

minimize σi, (43)
subject to (11), (44)

for all nodes i = 1, . . . , N .

1 2 3 4

5 6 7 8

9 10 11 12

Fig. 1. Communication graph of the sensor network in Example 1 with 4
active nodes and 8 pasive nodes (lines denote communication links, squares
denote active nodes, and circles denote passive nodes).

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present several numerical examples to
illustrate the results discussed in Sections III.A and III.B. For
this purpose, consider a process composed of two decoupled
systems with the dynamics given by (7), where

A =


0 1 0 0
−ω2

n1 −2ωn1ξ1 0 0
0 0 0 1
0 0 −ω2

n2 −2ωn2ξ2

 , (45)

B =


0 0
ω2

n1 0
0 0
0 ω2

n2

 , (46)

ωn1 = 1.2, ξ1 = 0.9, ωn2 = 0.5, and ξ2 = 0.6. This process,
for example, can represent a linearized simple vehicle model
with the first and third states corresponding to the positions
in the x and y directions, respectively, while the second and
fourth states corresponding to the velocities in the x and
y directions, respectively. The initial conditions are set to
xT

0 = [−3, 0.5, 2.5, 0.25]. In addition, we consider the
input given by

w(t) =

[
2.5 sin(t)

4 cos(1.2t)

]
. (47)

Example 1. For the first example, we consider a sensor
network with 12 nodes exchanging information over an
undirected and connected graph topology, where there are
4 active nodes and 8 passive nodes as shown in Figure 1.
Each node’s sensing capability is represented by (8) with the
output matrices

Ci =

[
1 0 0 0
0 0 1 0

]
, (48)

for the odd index nodes and

Ci =

[
0 1 0 0
0 0 0 1

]
. (49)

for the even index nodes. In addition, all nodes are subject
to zero initial conditions and we set Ki = diag([100; 100]),



Fig. 2. State estimates of the sensor network in Example 1 with 4 active
nodes and 8 passive nodes under the proposed architecture (9) and (10) (the
dash lines denote the states of the actual process and the solid lines denote
the state estimates of nodes).

α = 50, and γ = 0.1. For the observer gain Li, the odd
index nodes are subject to

Li =


18.969 −1.907
−0.487 −0.076
−1.939 19.130
−0.285 2.492

 , (50)

while the even index nodes are subject to

Li =


−2.388 0.358
5.831 −0.804
0.428 −2.398
−1.038 6.765

 . (51)

By solving the linear matrix inequality (11) for each node,
σi and Pi > 0 are obtained as σ1 = σ5 = 0.0021, σ2 =
σ6 = 1.83 × 10−6, σ3 = σ4 = σ7 = σ8 = σ9 = σ10 =
σ11 = σ12 = 0.0024, and

P1 = 103 ×


1.440 −0.034 0.055 −0.005
−0.034 0.004 0.004 0
0.055 0.004 0.977 −0.054
−0.005 0 −0.054 0.026

 ,
(52)

P2 = 102 ×


0.299 0 0.036 0

0 0.696 0 −0.001
0.036 0 0.298 0

0 −0.001 0 3.999

 , (53)

P12 =


1.44 0 0 0

0 1 0 0
0 0 1.342 0.529
0 0 0.529 3.496

 . (54)

Note that P1 = P5, P2 = P6 and P3 = P4 = P7 = P8 =
P9 = P10 = P11 = P12. Under the proposed distributed
estimation architecture (9) and (10), nodes are able to closely
estimate the process states and inputs as shown in Figure 2
and 3, respectively. N

Example 2. In this example, we increase the number of
active nodes in the sensor network to 8 as depicted in Figure

Fig. 3. Input estimates of the sensor network in Example 1 with 4 active
nodes and 8 passive nodes under the proposed architecture (9) and (10) (the
dash lines denote the inputs of the actual process and the solid lines denote
the input estimates of nodes).

4. The sensing capability of each agent is the same as in
Example 1. Note that, because of the change in the number of
active nodes, the design parameters are adjusted accordingly
as σ1 = σ3 = σ5 = σ7 = 0.0021, σ2 = σ4 = σ6 =
σ8 = 1.83 × 10−6, σ9 = σ10 = σ11 = σ12 = 0.0024, and
P1 = P3 = P5 = P7, P2 = P4 = P6 = P8, P9 = P10 =
P11 = P12, where P1, P2 and P12 are the same as (52),
(53), and (54), respectively. Other parameters and gains are
also kept the same. Figures 5 and 6 show the performance
of the sensor network for the proposed distributed estimation
architecture. It can be seen that the estimates in this case are
slightly better than the ones in Example 1 (i.e, Figure 2 and
Figure 3) as a result of increasing the number of active nodes
in the sensor network. N

Example 3. In this example, we consider a sensor network
with 8 active nodes and 4 passive nodes as in Example 2
(Figure 4), but change the system output matrices for each
node as follows

C1 =

[
1 0 0 0
0 0 0 0

]
, (55)

C2 =

[
0 1 0 0
0 0 0 1

]
, (56)

1 2 3 4

5 6 7 8

9 10 11 12

Fig. 4. Communication graph of the sensor network in Example 2 and 3
with 8 active nodes and 4 passive nodes (lines denote communication links,
squares denote active nodes, and circles denote passive nodes).



Fig. 5. State estimates of the sensor network in Example 2 with 8 active
nodes and 4 passive nodes under the proposed architecture (9) and (10) (the
dash lines denote the states of the actual process and the solid lines denote
the state estimates of nodes).

Fig. 6. Input estimates of the sensor network in Example 2 with 8 active
nodes and 4 passive nodes under the proposed architecture (9) and (10) (the
dash lines denote the inputs of the actual process and the solid lines denote
the input estimates of nodes).

C3 =

[
0 0 0 0
0 0 1 0

]
, (57)

where C1 = C5 = C9, C2 = C4 = C6 = C8 = C10 = C12

and C3 = C7 = C11. Note that for the odd index nodes,
the pair (A,Ci) is not observable. We also choose Ki =
diag([100; 100]), α = 50, and γ = 0.1.

Here, the observer gain Li is chosen such that

L1 =


19.069 −3.814
−0.486 0.097

0 0
0 0

 , (58)

L2 =


−2.388 0.358
5.831 −0.804
0.428 −2.398
−1.038 6.765

 , (59)

Fig. 7. State estimates of the sensor network in Example 3 with 12 active
nodes under the proposed architecture (9) and (10) (the dash lines denote
the states of the actual process and the solid lines denote the state estimates
of nodes).

L3 =


0 0
0 0

−3.845 19.225
−0.501 2.506

 , (60)

with L1 = L5 = L9, L2 = L4 = L6 = L8 = L10 = L12

and L3 = L7 = L11. By solving the linear matrix inequality
(11) for each node, σi and Pi > 0 are obtained as σ1 =
σ5 = 0.0024, σ2 = σ4 = σ6 = σ8 = 1.83 × 10−6, σ3 =
σ7 = 0.002, σ9 = σ10 = σ11 = σ12 = 0.0024, and

P1 =


1.440 0 0 0

0 1.000 0 0
0 0 697.827 −23.018
0 0 −23.018 18.832

 , (61)

P3 = 103 ×


1.478 −0.034 0 0
−0.034 0.004 0 0

0 0 0.002 0
0 0 0 0.006

 , (62)

with P1 = P5, P2 = P4 = P6 = P8, P3 = P7, and P9 =
P10 = P11 = P12, where P2 and P12 are the same as (53)
and (54) in Example 1, respectively. Figure 7 and 8 show that
under the proposed distributed estimation architecture, nodes
are able to closely estimate the process states and inputs,
although some active nodes are not able to fully observe the
process. Specifically, we can observe that the performances
get better over time. N

V. CONCLUSION

A distributed input and state estimation architecture was
investigated for heterogeneous sensor networks having nodes
with active and passive information processing roles and
nonidentical sensor modalities. It was shown that the pro-
posed framework utilizes local information not only during
the execution of the proposed estimation algorithm but also
in its design; that is, global stability is guaranteed once each
node satisfies given local stability conditions independent
from the graph topology and neighboring information of



Fig. 8. Input estimates of the sensor network in Example 3 with 12 active
nodes under the proposed architecture (9) and (10) (the dash lines denote
the inputs of the actual process and the solid lines denote the input estimates
of nodes).

these nodes. In addition, passivity or passivity-like assump-
tions often made in the classical input and state estimation
literature were further relaxed utilizing linear matrix in-
equalities. Several numerical examples illustrated the efficacy
of the proposed architecture. Future research will include
extensions of the proposed framework to handle sensor
networks having nodes with time-varying active and passive
information processing roles as well as dynamic data-driven
sensor network applications to guide and control autonomous
vehicles.
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