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Abstract— Current distributed control methods have a lack of
information exchange infrastructure to enable spatially evolving
multiagent formations. These methods are designed based on
information exchange rules for a single layer network, which
leads to multiagent formations with fixed, non-evolving spatial
properties. For situations where capable agents have to control
the resulting formation through these methods, they can only
do so if such vehicles have global information exchange ability;
however, this is not practical for cases that have large numbers
of agents and low-bandwidth peer-to-peer communications.

The contribution of this paper is to show how information
exchange rules, which are represented by a network having
multiple layers (multiplex information networks), can be de-
signed for enabling spatially evolving multiagent formations.
Specifically, we consider the formation tracking problem and
introduce a novel distributed control architecture that allows
capable agents to spatially alter density and orientation of the
resulting formation while tracking a dynamic, non-stationary
target without requiring global information exchange ability. In
addition, we use tools and methods from differential potential
fields to generalize the proposed architecture to allow for con-
nectivity maintenance and collision avoidance that are needed
in real-world applications. Stability of the proposed approaches
is theoretically analyzed and their efficacy are illustrated on a
numerical example.

I. INTRODUCTION

As advances in VLSI and MEMS technologies have
boosted the development of integrated microsystems that
combine mobility, computing, communication, and sensing
on a single platform, future military and civilian oper-
ations will have the capability to exploit large numbers
of interconnected agents such as low-cost and small-in-
size autonomous vehicles and microsensors. Such large-
scale multiagent systems will support operations ranging
from environment monitoring and military surveillance, to
guidance, navigation, and control of autonomous underwater,
ground, aerial, and space vehicles.

For performing operations with dramatically increasing
levels of complexity, multiagent systems require advanced
distributed information exchange rules in order to make these
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systems evolve spatially for adapting dynamic environments
and effectively responding to human interventions. Yet, cur-
rent distributed control methods lack information exchange
infrastructures to enable spatially evolving multiagent forma-
tions. This is due to the fact that these methods are designed
based on information exchange rules for a network having
a single layer (see, for example, [1]–[3] and references
therein), which leads to multiagent formations with fixed,
non-evolving spatial properties. For situations where capable
agents have to control the resulting formation through these
methods, they can only do so if such vehicles have global
information exchange ability, but this is not practical for
cases with large numbers of agents and low-bandwidth peer-
to-peer communications.

A. Contribution

The contribution of this paper is to show how information
exchange rules that are represented by a network with
multiple layers (multiplex information networks) can be de-
signed for enabling spatially evolving multiagent formations.
Specifically, we consider the formation tracking problem and
introduce a novel distributed control architecture that allows
capable agents to spatially alter density and orientation of the
resulting formation while tracking a dynamic, non-stationary
target without requiring global information exchange ability.
In addition, we use tools and methods from differential po-
tential fields to generalize the proposed architecture to allow
connectivity maintenance and collision avoidance that are
needed in real-world applications. Stability of the proposed
approaches is theoretically analyzed and their efficacy are
illustrated on a numerical example.

B. Literature Review

Studies on multiplex information networks have recently
emerged in the physics and networks science literatures,
where they consider system-theoretic characteristics of net-
work dynamics with multiple layers subject to intralayer and
interlayer information exchange [4]–[11] (there also exist
studies on multiplex networks that do not consider system-
theoretic characteristics; see [12] for an excellent survey on
this topic). However, these studies mainly consider cases
where all layers perform simple consensus algorithms and
analyze the convergence of the overall multiagent systems
in the presence of not only intralayer but also interlayer
information exchange, and hence, they do not deal with
controlling spatial properties of multiagent formations. Note
that there are also recent studies on networks of networks by
the authors of [13]–[15]. However, these studies deal with



large-scale systems formed from smaller factor networks via
graph Cartesian products; hence, they are also not related
with the contribution of this paper.

Spatial multiagent formation control is considered by the
authors of [16]–[19] using approaches different from multi-
plex information networks. In particular, the authors of [16]–
[18] assume that some of the formation design parameters are
known globally by all agents, and the authors of [19] assume
global knowledge of the complete network at the analysis
stage. However, as previously discussed, such assumptions
may not be practical in the presence of large numbers
of agents and low-bandwidth peer-to-peer communications.
From a data security point of view, in addition, it should be
noted that one may not desire a multiagent system with all
agents sharing some global information about an operation
of interest. Throughout this paper, we do not make such
assumptions in our multiplex information networks-based
spatial multiagent formation control approach.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

In this section, we introduce the notation used throughout
the paper and recall some basic notions from graph theory,
which are followed by the general setup of consensus and
formation problems for multiagent systems that are necessary
to establish the main results of this paper. For additional
details about graph theory and multiagent systems, we refer
to the excellent textbooks [1], [2], [20].

A. Notation

The notation used in this paper is fairly standard. Specif-
ically, R denotes the set of real numbers, Rn denotes the
set of n × 1 real column vectors, Rn×m denotes the set of
n×m real matrices, R+ (resp. R+) denotes the set of posi-
tive (resp. non-negative-definite) real numbers, Rn×n+ (resp.
Rn×n+ ) denotes the set of n× n positive-definite (resp. non-
negative-definite) real matrices, Sn×n+ (resp. Sn×n+ ) denotes
the set of n×n symmetric positive-definite (resp. symmetric
nonnegative-definite) real matrices, 0n denotes the n × 1
vector of all zeros, 1n denotes the n× 1 vector of all ones,
0n×n denotes the n × n zero matrix, and In denotes the
n×n identity matrix. In addition, we write (·)T for transpose,
λmin(A) and λmax(A) for the minimum and maximum
eigenvalue of the Hermitian matrix A, respectively; λi(A)
for the i-th eigenvalue of A, where A is symmetric and the
eigenvalues are ordered from least to greatest value, det(A)
for the determinant of A, diag(a) for the diagonal matrix
with the vector a on its diagonal, [x]i for the entry of the
vector x on the i-th row, and [A]ij for the entry of the of the
matrix A on the i-th row and j-th column.

B. Notions from Graph Theory

In the multiagent systems literature, graphs are broadly
adopted to encode interactions between networked agents.
An undirected graph G is defined by a set VG = {1, . . . , n}
of nodes and a set EG ⊂ VG × VG of edges. If the distance
between two arbitrary nodes is less than R, then they are
said to be neighbors and the neighboring relation is denoted

by j ∈ Ni , {j| j ∈ VG , ‖xij‖2 < R}, where xij , xi−xj
with xi and xj being the state (position) of nodes i and
j, respectively. In addition, if (i, j) ∈ EG , then the nodes i
and j are said to be formation neighbors [21], [22] and this
relation is denoted by j ∈ N f

i , where N f
i is a subset of Ni.

In general, note that Ni can be a time-varying set while N f
i

is a static set, that is, N f
i remains unchanged in the presence

of node movements. The degree of a node is given by the
number of its formation neighbors. In particular, letting di
be the degree of node i, the degree matrix of a graph G,
D(G) ∈ Rn×n, is given by

D(G) , diag(d), d = [d1, . . . , dn]T. (1)

A path i0i1 . . . iL is a finite sequence of nodes such that
ik−1 ∈ N f

ik
with k = 1, . . . , L, and a graph G is connected

if there exists a path between any pair of distinct nodes. The
adjacency matrix of a graph G, A(G) ∈ Rn×n, is given by

[A(G)]ij ,

{
1, if (i, j) ∈ EG ,
0, otherwise. (2)

The Laplacian matrix of a graph, L(G) ∈ Sn×n+ , which
plays a central role in many graph-theoretic treatments of
multiagent systems, is given by

L(G) , D(G)−A(G), (3)

where the spectrum of the Laplacian for an undirected and
connected graph G can be ordered as

0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λn(L(G)), (4)

with 1n as the eigenvector corresponding to the zero eigen-
value λ1(L(G)) and L(G)1n = 0n and eL(G)1n = 1n hold.
In this paper, we assume that the graph G is undirected and
connected unless noted otherwise.

C. Consensus Dynamics

We can model a given multiagent system by a graph
G, where nodes and edges represent agents and interagent
information exchange links, respectively. Let xi(t) ∈ Rm
denote the state of node i, whose dynamics is described by
the single integrator

ẋi(t) = ui(t), xi(0) = xi0, i = 1, · · · , n, (5)

with ui(t) ∈ Rm being the control input of node i. Allowing
agent i to have access to the relative state information with
respect to its formation neighbors, a solution to the consensus
problem can be achieved, for example, by applying

ui(t) = −
∑
j∈N f

i

(
xi(t)− xj(t)

)
, (6)

to the single integrator dynamics given by (5) [1], [2],
where (5) in conjunction with (6) can be represented as the
Laplacian dynamics of the form

ẋ(t) = −L(G)⊗ Im x(t), x(0) = x0, (7)

with x(t) = [xT
1 (t), · · · , xT

n (t)]T denoting the aggregated
state vector of the multiagent system. Since the graph G is



assumed to be undirected and connected, it follows from (7)
that

lim
t→∞

[xi(t)]j =
[x1(0)]j + · · · [xn(0)]j

n
, (8)

holds for i = 1, . . . , n and j = 1, . . . ,m. In this paper, we
assume that m = 2 without loss of generality, which implies
that the multiagent system evolves in a planar space.

D. Formation Dynamics

For our take on the formation problem, define τi(t) ∈ R2

as the displacement of xi(t) ∈ R2 from the desired formation
position of agent i, ξi ∈ R2. Using the state transformation
given by

τi(t) = xi(t)− ξi, i = 1, . . . , n, (9)

a solution to the formation problem follows from (7) with
m = 2 as

ẋ(t) = −L(G)⊗ I2 x(t) + L(G)⊗ I2 ξ, x(0) = x0, (10)

[1], [2], where ξ = [ξ1, · · · , ξn]T. Note that (10) can
equivalently be written as

ẋi(t) = −
∑
j∈N f

i

(
xi(t)− xj(t)

)
+
∑
j∈N f

i

(
ξi − ξj

)
,

xi(0) = xi0. (11)

In the rest of this paper, we consider a generalized version
of this formation problem that not only allows agents to
achieve a desired formation but also allows them to track
a dynamic, non-stationary target. In this setting, we first
introduce a novel distributed control architecture using mul-
tiplex information networks to spatially alter density and
orientation of the resulting formation during target tracking
(Section III) and then generalize these results to allow for
connectivity maintenance and collision avoidance (Section
IV). Although we consider this particular formation problem
in this paper, the presented multiplex information networks-
based approach can be used with many other approaches to
formation control.

III. SPATIALLY EVOLVING MULTIAGENT FORMATIONS

Consider a system of n agents exchanging information
among each other using their local measurements according
to a connected, undirected graph G. Specifically, we propose
a distributed control architecture using networks having
multiple layers with the main (physical) network layer given
by

ẋi(t) = −
∑
j∈N f

i

((
xi(t)− pi(t)− ci(t)

)
−
(
xj(t)− pj(t)− cj(t)

))
−ki

(
xi(t)− pi(t)− ci(t)

)
+ ṗi(t) + ċi(t),

xi(0) = xi0, (12)

where xi(t) ∈ R2 denotes the state (i.e., physical position)
of agent i, and ci(t) , [cxi (t), cyi (t)]T ∈ R2 and

pi(t) , R
(
θi(t)

)
S
(
γxi (t), γyi (t)

)
ξi ∈ R2, (13)

correspond to the signals locally obtained through other
network layers described in the next paragraph. In (12),
ki = 1 only for capable (i.e., leader) agents and it is zero
otherwise. Note that we implicitly assume that there exists
at least one capable agent in the multiagent system. In (13),
ξi ∈ R2 denotes the desired formation position of agent i in
the sense discussed in Section II.D, θi(t) ∈ R is the rotation
angle of agent i that is used in its local rotation matrix given
by

R(θi(t)) ,

[
cos θi(t) − sin θi(t)
sin θi(t) cos θi(t)

]
∈ R2×2, (14)

and γxi (t) ∈ R and γyi (t) ∈ R are scaling factors of agent i
in x and y dimensions of the planar space, respectively, that
are used in its local scaling matrix given by

S
(
γxi (t), γyi (t)

)
, diag

(
[γxi (t), γyi (t)]T

)
∈ R2×2. (15)

To define the dynamical structure of other network layers,
let φi(t) denotes either cxi (t) ∈ R, cyi (t) ∈ R, θi(t) ∈ R,
γxi (t) ∈ R, or γyi (t) ∈ R for conciseness of the following
discussion that satisfy

φ̇i(t) = −qi(t)− τsgn
(
qi(t)

)
, φi(0) = φi0, (16)

qi(t) ,
∑
j∈N f

i

(
φi(t)− φj(t)

)
+ ki

(
φi(t)− φ0(t)

)
,

(17)

where τ ∈ R is a positive design parameter and it is
assumed that φ̇0(t) is bounded. Note that in (16) and (17),
φ0(t) denotes either cx(t) ∈ R, cy(t) ∈ R, θ0(t) ∈ R,
γx0 (t) ∈ R, or γy0 (t) ∈ R, where c(t) , [cx(t), cy(t)]T is
the position of the dynamic target on a planar space, θ0(t) is
the desired rotation angle, and γx0 (t) and γy0 (t) are desired
scaling factors, respectively. Since ki = 1 only for capable
agents, notice that c(t), θ0(t), γx0 (t), and γy0 (t) are only
available to the capable agents.

Since φ̇0(t) is bounded, this implies that |ċx(t)| ≤ ωcx ,
|ċy(t)| ≤ ωcy , |θ̇0(t)| ≤ ωθ0 , |γ̇x0 (t)| ≤ ωγx

0
, and |γ̇y0 (t)| ≤

ωγy
0

. In what follows, we let ω to be the largest constant
among ωcx , ωcy , ωθ0 , ωγx

0
, and ωγy

0
without loss of generality

(i.e., |φ̇0(t)| ≤ ω), and set τ > ω. The next theorem shows
that the multiplex information networks-based distributed
controller architecture given by (12) and (16) not only allows
agents to track a dynamic target but also allows them to alter
density and orientation of the resulting formation.

Theorem 1. Consider the networked multiagent system
given by (12) and (16), where agents exchange their local
measurements using an undirected and connected graph G.
Then,

lim
t→∞

xi(t) = c(t) +R(θ0(t))S(γx0 (t), γy0 (t))ξi, (18)

holds for all i = 1, . . . , n.
Proof. We first show that φi(t) converges to φ0(t) for

all cases when φi(t) denotes either ci(t) ∈ R2, θi(t) ∈ R,
γxi (t) ∈ R, or γyi (t) ∈ R. For this purpose, consider the state
transformation given by

φ̃i(t) , φi(t)− φ0(t), i = 1, . . . , n. (19)



Using (16), (17), and (19) yields

˙̃
φi(t) = −qi(t)− τsgn

(
qi(t)

)
− φ̇0(t), (20)

qi(t) =
∑
j∈N f

i

(
φ̃i(t)− φ̃j(t)

)
+ kiφ̃i(t). (21)

By letting φ̃(t) , [φ̃1(t), . . . , φ̃n(t)]T , (20) and (21) can be
written in the compact form as

˙̃
φ(t) = −q(t)− τsgn

(
q(t)

)
− 1nφ̇0(t), (22)

q(t) = (L(G) +K)φ̃(t), (23)

where K , diag([k1, . . . , kn]T ).
Now, consider the Lyapunov function candidate V (φ̃) =

1
2 φ̃

T (L(G) + K)φ̃, where its time derivative along the tra-
jectory of (22) is given by

V̇ (φ̃(t)) = φ̃T (L(G) +K)

(
− (L(G) +K)φ̃(t)

−τsgn
[
(L(G) +K)φ̃(t)

]
− 1nφ̇0(t)

)
≤ −φ̃T (L(G) +K)2φ̃(t)

−τ‖(L(G) +K)φ̃(t)‖1
+|φ̇0(t)|‖(L(G) +K)φ̃(t)‖1

≤ −φ̃T (L(G) +K)2φ̃(t)

−(τ − ω)‖(L(G) +K)φ̃(t)‖1. (24)

Since L(G) +K ∈ Sn×n+ [2] and (τ − ω) > 0 by definition,
V̇ (φ̃(t)) is negative definite. Therefore, φ̃(t)→ 0 as t→∞;
or equivalently, φi(t) → φ0(t) as t → ∞. In other words,
pi(t) will converge to R(θ0(t))S(γx0 (t), γy0 (t))ξi, and ci(t)
will converge to c(t) asymptotically.

Next, for the main network layer (12), let’s consider the
state transformation

zi(t) , xi(t)− pi(t)− ci(t), i = 1, . . . , n. (25)

Using (25), (12) can be rewritten as

żi(t) = −
∑
j∈N f

i

(
zi(t)− zj(t)

)
− kizi(t), (26)

Define z(t) , [z1(t), . . . , zn(t)]T , then (26) can be written
in the compact form as

ż(t) = −(L(G) +K)⊗ I2z(t), (27)

Since it is assumed that there exists at least one capable agent
in the network (i.e, at least one of the diagonal elements
of K is equal to 1), it follows from [Lemma 2, 23] that
L(G) +K ∈ Sn×n+ , and hence, −

(
L(G) +K

)
is a Hurwitz

matrix. As a direct consequence, z(t) → 0 as t → ∞; or
equivalently xi(t)→ pi(t) + ci(t). Hence, (18) holds. �

Remark 1. The dynamical structure of other network
layers given by (16) and (17) uses the sign functions in
order to achieve asymptotic stability in the presence of time-
varying signals cx(t), cy(t), θ0(t), γx0 (t), and γy0 (t), which
is consistent with the results in the networked multiagent
systems literature (see, for example, [24], [25]). Note that if

cx(t), cy(t), θ0(t), γx0 (t), and γy0 (t) are all constants, then
the results of Theorem 1 still hold without the need for the
sign function in (16) and (17); that is,

φ̇i(t) = −
∑
j∈N f

i

(
φi(t)− φj(t)

)
− ki

(
φi(t)− φ0

)
. (28)

We can also reach a similar conclusion for the case when
some of these signals are constant and the respective sign
functions for those are removed from (16) and (17).

Remark 2. A positive design parameter α can be used in
the main network layer given by (12) as

ẋi(t) = −α
[ ∑
j∈N f

i

((
xi(t)− pi(t)− ci(t)

)
−
(
xj(t)− pj(t)− cj(t)

))
−ki

(
xi(t)− pi(t)− ci(t)

)]
+ṗi(t) + ċi(t),

xi(0) = xi0, (29)

in order to improve convergence rate of the networked
multiagent system. In this case, the proof of Theorem 1
remains identical with the term (L(G) + K) replaced with
α(L(G)+K) in (27). We can also reach a similar conclusion
when another positive design parameter is introduced to the
other network layers given by (16) and (17).

Remark 3. The proposed algorithm can be readily gener-
alized to a three dimensional case with xi(t) ∈ R3. In this
case, pi(t) ∈ R3 can be redefined as

pi(t) , R
(
θxi (t), θyi (t), θzi (t)

)
S
(
γxi (t), γyi (t), γzi (t)

)
ξi, (30)

where θxi (t) ∈ R, θyi (t) ∈ R, and θzi (t) ∈ R are
the rotation angles corresponding to yaw, pitch, and roll,
respectively, R

(
θxi (t), θyi (t), θzi (t)

)
is the rotation matrix,

γxi (t) ∈ R, γyi (t) ∈ R, and γzi (t) ∈ R are the scaling
factors for each dimension, and S

(
γxi (t), γyi (t), γzi (t)

)
,

diag([γxi (t), γyi (t), γzi (t)]T ) is the scaling matrix. In this
case, φi(t) represents either cxi (t), cyi (t), θxi (t), θyi (t), θzi (t),
γxi (t), γyi (t), or γzi (t) that satisfies (16) and (17).

Remark 4. The proposed multiplex networks-based spatial
formation control algorithm given by (12) and (16) can be
also readily generalized to the case where the graph G is
directed under the assumption that there exists at least one
capable agent at the root of the spanning tree [1].

IV. GENERALIZATIONS TO ALLOW FOR CONNECTIVITY
MAINTENANCE AND COLLISION AVOIDANCE

In this section, we use tools and methods from differential
potential fields (see, for example, [2], [21], [22], [26], [27]
and references therein) and generalize the results of Sec-
tion III to allow for connectivity maintenance and collision
avoidance that are needed in real-world applications. For this
purpose, we let each agent have a communication range as
given in Figure 1. Specifically, we assume that two arbi-
trary agents can only exchange information if their relative
distance is less than R, i.e., ‖xij‖2 < R. Furthermore, a
collision region is defined as a small disk area with radius
r < d < R centered at agent i as depicted in this figure.
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Fig. 1. Communication range of agent i.

In the same way, we define an escape region as a ring with
radius ∆ < r < R also centered at agent i. The region within
the collision region and escape region (d < r < ∆) is called
free region.

We first define a (repulsive) differential potential function
for the purpose of collision avoidance as

VRij(xij) ,

{(
1

‖xij‖22
− 1

d2

)2

if ‖xij‖2 ≤ d, j ∈ Ni,
0 otherwise,

(31)

where

∂VRij(xij)

∂xi
=


−4
(

1
‖xij‖22

− 1
d2

)
xij

‖xij‖42
if ‖xij‖2 ≤ d, j ∈ Ni,

0 otherwise.

(32)

Now, we define a (attractive) differential potential function
fur the purpose of connectivity maintenance as

VCij(xij) ,

{
(‖xij‖2−∆)2

R−‖xij‖2 if ‖xij‖2 ≥ ∆, j ∈ N f
i ,

0 otherwise,
(33)

where

∂VCij(xij)

∂xi
=


(‖xij‖2−∆)(2R−∆−‖xij‖2)

(R−‖xij‖2)2‖xij‖2 xij

if ‖xij‖2 ≥ ∆, j ∈ N f
i ,

0 otherwise.

(34)

Note that VRij = VRji and VCij = VCji as well as VRij =
VCij = 0 for i = j. The repulsive differential potential
function VRij is smoothly activated when ‖xij‖2 ≤ d and
grows to infinity as ‖xij‖2 approaches 0. In addition, the
attractive differential potential function VCij is smoothly
activated when ‖xij‖2 ≥ ∆ and grows to infinity as ‖xij‖2
approaches R. Notice that VRij applies to agent i and any
agent j who are neighbor of i (i.e., j ∈ Ni), while VCij only
affects agent i and its formation neighbors (i.e., j ∈ N f

i ). In
addition, we assume that the desired distance between any
two arbitrary agents lies in the free region, where this implies
that the scaling factors need to be lower and upper bounded
such that this assumption is not violated.

Based on the above definitions, we generalize the results
of the previous section by considering the distributed spatial

formation control algorithm given by

ẋi(t) = −
∑
j∈N f

i

((
xi(t)− pi(t)− ci(t)

)
−
(
xj(t)− pj(t)− cj(t)

))
−ki

(
xi(t)− pi(t)− ci(t)

)
+ ṗi(t) + ċi(t),

−
∑
j∈Ni

∂VRij(xij)

∂xi
−
∑
j∈N f

i

∂VCij(xij)

∂xi
,

xi(0) = xi0, (35)

Since we can achieve connectivity maintenance and collision
avoidance by only modifying the main network layer in
(12) as (35), all other network layers given by (16) remain
unchanged in this setting. For the next result, we implicitly
assume that agents are not stuck in local minima such that
they can asymptotically converge to the free region; this
assumption is standard in the networked multiagent systems
literature that adopts tools and methods from differential
potential fields (see Remark 5 for further discussion).

Theorem 2. Consider the networked multiagent system
given by (35) and (16), where agents exchange their local
measurements using an undirected and connected graph G.
If the agents are initially connected with their formation
neighbors and there is no collision, then (18) holds for all
i = 1, . . . , n with connectivity maintenance and collision
avoidance for all t ≥ 0.

Proof. Using the state transformation given by (25), (35)
can be rewritten as

żi(t) = −
∑
j∈N f

i

(
zi(t)− zj(t)

)
− kizi(t)

−
∑
j∈Ni

∂VRij(xij)

∂zi
−
∑
j∈N f

i

∂VCij(xij)

∂zi
. (36)

Note that ∂VRij(xij)
∂xi(t)

=
∂VRij(xij)
∂zi(t)

and ∂VCij(xij)
∂xi(t)

=
∂VCij(xij)
∂zi(t)

. We define

VAi(zi(t)) ,
1

2

∑
j∈N f

i

‖(zi(t)− zj(t)‖22 +
1

2
ki‖zi(t)‖22, (37)

where the partial derivative of (37) with respect to zi(t) is
given by ∂VAi(zi(t))

∂zi(t)
=
∑
j∈N f

i

(
zi(t) − zj(t)

)
+ kizi(t).

Now, we can write

żi(t) = −∂VAi(zi(t))
∂zi(t)

−
∑
j∈Ni

∂VRij(xij)

∂zi(t)
−
∑
j∈N f

i

∂VCij(xij)

∂zi(t)

= −∂VAi(zi(t))
∂zi(t)

−
n∑
j=1

(
∂VRij(xij)

∂zi(t)
+
∂VCij(xij)

∂zi(t)

)
. (38)



Next, consider the continuously differentiable function V :
DV × R2n → R+ given by

V (·) =
(1

2

n∑
i=1

VAi(zi(t)) +
1

4

n∑
i=1

ki‖zi‖22
)

+
1

2

n∑
i=1

n∑
j=1

(
VRij(xij) + VCij(xij)

))
, (39)

where DV = {x ∈ R2n : ‖xij‖2 ∈ (0, R) ∀ j ∈ N f
i and

‖xij‖2 ∈ (0,∞) ∀ j ∈ Ni \ N f
i }. For any c > 0, let Ω =

{(x, z) ∈ DV × R2n : V (·) ≤ c} denote the level sets of
V (·) and note that

V̇ (·) = (∇zV )T ż(t)

=

n∑
i=1

(
(∇zi(t)V )T żi(t)

)
=

n∑
i=1

[(
1

2
∇zi(t)

( n∑
i=1

VAi(zi(t))
)

+
1

4
∇zi(t)

( n∑
i=1

ki‖zi‖22
)

+∇zi(t)
(

1

2

n∑
i=1

n∑
j=1

(
VRij(xij) + VCij(xij)

)))T

·żi(t)
]

=

n∑
i=1

[(
∇zi(t)VAi(zi(t))

+

n∑
j=1

(
∇zi(t)VRij(xij) +∇zi(t)VCij(xij)

))T
·żi(t)

]
=

n∑
i=1

−‖żi(t)‖22 ≤ 0, t ≥ 0. (40)

Since V̇ (·) ≤ 0, the level sets Ω are positively invariant,
and hence, VAi(zi(t)), VRij(xij) and VCij(xij) are bounded
[26]. If for some j ∈ Ni such that ‖xij‖2 → 0, then VRij →
∞. Therefore, by the continuity of V in DV , it follows that
‖xij‖2 > 0 for all j ∈ Ni(t). Likewise, if for some j ∈
N f
i such that ‖xij‖2 → R, then VCij → ∞. Once again,

by the continuity of V in DV , it follows that ‖xij‖2 < R

for all j ∈ N f
i . Thus, if the agents are initially connected

with their formation neighbors and there is no collision, then
collision avoidance between agent i and its neighbors (i.e.,
j ∈ Ni) and connectivity maintenance between agent i and
its formation neighbors (i.e., j ∈ N f

i ) are guaranteed for all
t ≥ 0.

The level sets Ω are closed by the continuity of V in DV

and they are bounded since V̇ (·) ≤ 0, and hence, they are
compact. By LaSalle’s invariance principle, all trajectories
starting in Ω converge to the largest invariant set in {(x, z) ∈
DV × R2n : V̇ (·) = 0} = {z ∈ R2n : ż(t) = 0}. Based

on the assumption that agents are not stuck in local minima
such that they can asymptotically converge to the free region,
it now follows from Theorem 1 that (18) holds. �

Remark 5. Without the assumption that agents are not
stuck in local minima, one of the following two cases
occurs based on the discussion given in the last paragraph
of Theorem 2:

i) Agents can converge to the free region and (18) holds.
ii) It follows from LaSalle’s invariance principle and (38)

that ∂VAi(zi(t))
∂zi(t)

= −∑n
j=1

(
∂VRi(xij)
∂zi(t)

+
∂VCi(xij)
∂zi(t)

)
holds, where both left and right hand sides of this
equation are not equal to zero.

Note that case ii) implies that agents are stuck in local
minima. Although there are several methods to avoid local
minima (see, for example, [28]–[30]), it is an open problem
in the networked multiagent systems literature that adopts
tools and methods from differential potential fields. Yet, for
example, one can use the idea stated in [28], which assumes
that agents that are stuck can be detected (e.g., agents that
are not moving for a specific amount of time) and a force

Fvi ,

{
Fi if żi(t) = 0 and ∂VAi(zi(t))

∂zi(t)
6= 0,

0 otherwise,
(41)

is generated to push such agents out of the local minima
with Fi being a random finite value for each agent. This
force can eventually yield all agents to converge to the free
region such that (18) follows.

V. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we present a numerical example to illus-
trate the results of this paper. For this purpose, consider
a group of 5 agents with agent 1 being the capable agent
and assume that all agents are subject to random initial
conditions. We choose ξi for each agent to obtain the desired
formation depicted in Figure 2. Specifically, to illustrate the
results of Theorem 1, we use (29) with α = 5. In addition,
for (16), we use cx(t) = t; cy(t) = sin(t); θ0 = 0; and low-
pass filtered version of ψ(t) = 0.5 for t ∈ [0, 10), ψ(t) =
−0.25t + 3 for t ∈ [10, 11), ψ(t) = 0.25 for t ∈ [11, 20),
ψ(t) = 0.75t − 14.75 for t ∈ [20, 21), and ψ(t) = 1 for
t ∈ [21,∞) for both γx0 (t) and γy0 (t). The time derivatives
of cxi (t), cyi (t), θi(t), γxi (t), and γyi (t) are all upper bounded
by 5 or a smaller constant, and hence, we set τ = 5.
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Fig. 2. Desired formation used in illustrative numerical examples.



Figure 3 shows that the considered group of agents perform
target tracking while simultaneously forming, maintaining,
and spatially altering their formation in time. Furthermore,
Figures 4 and 5 show that γi(t) converges to the desired
values of the scaling factors and the state transformation
variable zi(t) approaches to zero, respectively.
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Fig. 3. Target tracking using the proposed multiplex networks-based spatial
formation control algorithm in Theorem 1.
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(a) Time evolution of γxi (t).
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(b) Time evolution of γyi (t).

Fig. 4. Time evolution of the scaling factors in Fig. 3.

Next, we illustrate the results of Theorem 2. In particular,
we add the potential field functions to (29) as in (35)
and set d = 0.5, ∆ = 6, and R = 8, where all other
design parameters remain the same. Figure 6 shows that
the considered group of agents achieves the same level of
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(a) Time evolution of zxi (t).
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(b) Time evolution of zyi (t)

Fig. 5. Time evolution of zi(t) in Fig. 3.

performance as in Figure 3 while maintaining connectivity
and avoiding collisions. In addition, Figure 7 shows the
evolution of distances between agents during t ∈ [0, 5]
seconds and illustrates collision avoidance properties of the
proposed multiplex networks-based spatial formation control
algorithm.
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Fig. 6. Target tracking using the proposed multiplex networks-based spatial
formation control algorithm in Theorem 2.

VI. CONCLUSION

To contribute to the previous studies in multiagent sys-
tems, we investigated how information exchange rules repre-
sented by multiplex information networks can be designed to
enable spatially evolving multiagent formations. Specifically,
we proposed and analyzed a distributed control architecture
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Fig. 7. Time evolution of distances between agents.

for the formation tracking problem that allows capable agents
to spatially alter density and orientation of the resulting
formation while tracking a dynamic, non-stationary target
without requiring global information exchange ability. We
further generalize these results to allow for connectivity
maintenance and collision avoidance by using tools and
methods from differential potential fields. Considering multi-
agent operations with dramatically increasing levels of com-
plexity, the presented multiplex networks-based approach
can also be used with many other approaches in multiagent
systems to enable advanced distributed information exchange
rules to make these systems evolve spatially in adapting
to dynamic environments and respond effectively to human
interventions. Our future research will include extensions of
the proposed approach to agents with high-order dynamics
as well as applications of this architecture to autonomous
ground and aerial vehicles.
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